Objectives: The pathophysiology of inflammatory airway disease (IAD) is unknown, but in some cases involves the accumulation of mast cells, neutrophils, or both in the bronchoalveolar lavage fluid (BALF). The objective of this study was to characterize cytokine gene expression in the BALF cells of horses with IAD, including a comparison of cytokine gene expression between IAD horses with increased BALF mast cells (IAD-Mast) or neutrophils (IAD-Neutro).Methods: The mRNA expression of IL-4, IFN-c, IL-17, IL-8, IL-1b, IL-5, IL-6, IL-10, IL-12p35, and eotaxin-2 was studied by quantitative polymerase chain reaction (QPCR) with efficiency correction in BALF samples of 17 horses with IAD (IAD-total), also subcategorized as 8 IAD-Mast and 9 IAD-Neutro, and 10 controls. Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) was used as a reference gene. Relative expression software tool (REST) analysis provided ratios of expression, statistical analysis, and confidence intervals for the results.Results: Compared with the control group, IL-5, IL-1b, IL-6, IL-8, and IL-10 mRNA expression was upregulated 3.5-, 3.4-, 2.8-, 2.2-, and 1.9-fold, respectively, in the IAD-total group. The IAD-Neutro group showed increased expression of IL-17, IL-8, and IL-5 (4.7-, 2.5-, and 2.9-fold, respectively) and a decreased expression of IL-4 (3.4-fold) compared with the IAD-Mast group.Conclusion: Cytokines from the Th2 family plays a key role in IAD and a different pathophysiology may be involved in mast cell versus neutrophil BALF accumulation in IAD horses.
BackgroundThe stability of reference genes has a tremendous effect on the results of relative quantification of genes expression by quantitative polymerase chain reaction. Equine Inflammatory Airway Disease (IAD) is a common condition often treated with corticosteroids. The diagnosis of IAD is based on clinical signs and bronchoalveolar lavage (BAL) fluid cytology. The aim of this study was to identify reference genes with the most stable mRNA expression in the BAL cells of horses with IAD irrespective of corticosteroids treatment.ResultsThe expression stability of seven candidate reference genes (B2M, HPRT, GAPDH, ACTB, UBB, RPL32, SDHA) was determined by qRT-PCR in BAL samples taken pre- and post- treatment with dexamethasone and fluticasone propionate for two weeks in 7 horses with IAD. Primers' efficiencies were calculated using LinRegPCR. NormFinder, GeNorm and qBasePlus softwares were used to rank the genes according to their stability. GeNorm was also used to determine both the ideal number and the best combination of reference genes. GAPDH was found to be the most stably expressed gene with the three softwares. GeNorm ranked B2M as the least stable gene. Based on the pair-wise variation cut-off value determined with GeNorm, the number of genes required for optimal normalization was four and included GAPDH, SDHA, HPRT and RPL32.ConclusionThe geometric mean of GAPDH, HPRT, SDHA and RPL32 is recommended for accurate normalization of quantitative PCR data in BAL cells of horses with IAD treated with corticosteroids. If only one reference gene can be used, then GAPDH is recommended.
BackgroundAirway hyperresponsiveness (AWHR), expressed as hypersensitivity (PC 75 RL) or hyperreactivity (slope of the histamine dose‐response curve), is a feature of inflammatory airway disease (IAD) or mild equine asthma in horses. Glucocorticoids are used empirically to treat IAD.ObjectivesTo determine whether dexamethasone (DEX) (0.05 mg/kg IM q24h) and inhaled fluticasone (FLUT) (3,000 μg q12h) administered by inhalation are effective in decreasing AWHR, lung inflammation, and clinical signs in horses with IAD.MethodsA randomized crossover study design was used. Eight horses with IAD were assigned to a treatment group with either DEX or FLUT. Measured outcomes included lung mechanics during bronchoprovocative challenges, bronchoalveolar lavage fluid (BALF) cytology, and scoring of clinical signs during exercise.ResultsDexamethasone and FLUT abolished the increase in RL by 75% at any histamine bronchoprovocative dose in all horses after the first week of treatment. However, after 2 weeks of FLUT treatment, 1 horse redeveloped hypersensitivity. There was a significant decrease in the number of lymphocytes after treatment with both DEX and FLUT (P = .039 for both) but no significant differences in other BALF cell types or total cell counts (P > .05). There was no difference in the scoring of the clinical signs during each treatment and washout period (P > .05).Conclusions and Clinical ImportanceBoth DEX and FLUT treatments significantly inhibit airway hypersensitivity and hyperreactivity in horses with IAD. There are no significant effects on the clinical signs or the number of inflammatory cells (except lymphocytes) in BALF. The treatments have no residual effect 3 weeks after discontinuation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.