We use 2H NMR stimulated-echo spectroscopy to measure two-time correlation functions characterizing the polymer segmental motion in polymer electrolytes PPO-LiClO4 near the glass transition temperature Tg. To investigate effects of the salt on the polymer dynamics, we compare results for different ether oxygen to lithium ratios, namely, 6:1, 15:1, 30:1, and infinity. For all compositions, we find nonexponential correlation functions, which can be described by a Kohlrausch function. The mean correlation times show quantitatively that an increase of the salt concentration results in a strong slowing down of the segmental motion. Consistently, for the high 6:1 salt concentration, a high apparent activation energy Ea=4.1 eV characterizes the temperature dependence of the mean correlation times at Tg
The authors measure 2H NMR multitime correlation functions to investigate the segmental motion of poly(propylene glycol) containing various amounts of the salt LiClO4. 2H NMR two-time correlation functions indicate that addition of salt affects not only the time scale of the segmental motion, but also the degree of the nonexponential relaxation behavior. To quantify the origin of the nonexponential segmental motion, the authors analyze 2H NMR three-time correlation functions. In general, nonexponential relaxation can result from homogeneous dynamics, i.e., intrinsic nonexponentiality, and from heterogeneous dynamics, i.e., existence of a distribution of correlation times G(ln tau). For the studied high and low salt concentrations, including neat poly(propylene glycol), the analysis shows that both homogeneous and heterogeneous contributions are important. 2H NMR four-time correlation functions allow the authors to measure the lifetime of the dynamical heterogeneities. For the studied salt concentrations, the rate exchange occurs on the same time scale as the segmental motion, indicating short-lived dynamical heterogeneities. To arrive at these results, the authors reconsider the interpretation of (2)H NMR three-time correlation functions. Results of analytical calculations and computer simulations show that it is necessary to extend the previous way of analysis so as to include effects due to correlated back-and-forth jumps.
We investigate ion and polymer dynamics in polymer electrolytes PPO-LiClO4 performing 2H and 7Li NMR line-shape analysis. Comparison of temperature dependent 7Li and 2H NMR spectra gives evidence for a coupling of ion and polymer dynamics. 2H NMR spectra for various salt concentrations reveal a strong slowdown of the polymer segmental motion when the salt content is increased. The 2H NMR line shape further indicates that the segmental motion is governed by dynamical heterogeneities. While the width of the distribution of correlation times G(log tau) is moderate for low and high salt content, an extremely broad distribution exists for an intermediate salt concentration of 15:1 PPO-LiClO4. For the latter composition, a weighted superposition of two spectral components, reflecting the fast and the slow polymer segments of the distribution, describes the 2H NMR line shape over a broad temperature range. Analysis of the temperature dependent relative intensity of both spectral components indicates the existence of a continuous rather than a discontinuous distribution G(log tau). Such continuous distribution is consistent with gradual fluctuations of the local salt concentration and, hence, of the local environments of the polymer segments, whereas it is at variance with the existence of large salt-depleted and salt-rich domains featuring fast and slow polymer dynamics, respectively. Finally, for all studied PPO-LiClO4 mixtures, the 2H NMR line shape strongly depends on the echo delay in the applied echo-pulse sequence, indicating that the structural relaxation of the polymer segments involves successive rotational jumps about small angles gamma < 20 degrees .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.