The paper studies the robust maximization of utility from terminal wealth in a diffusion financial market model. The underlying model consists of a tradable risky asset whose price is described by a diffusion process with misspecified trend and volatility coefficients, and a non-tradable asset with a known parameter. The robust functional is defined in terms of a utility function. An explicit characterization of the solution is given via the solution of the Hamilton-Jacobi-Bellman-Isaacs (HJBI) equation.
We consider the mean-variance hedging problem under partial Information. The underlying asset price process follows a continuous semimartingale and strategies have to be constructed when only part of the information in the market is available. We show that the initial mean variance hedging problem is equivalent to a new mean variance hedging problem with an additional correction term, which is formulated in terms of observable processes. We prove that the value process of the reduced problem is a square trinomial with coefficients satisfying a triangle system of backward stochastic differential equations and the filtered wealth process of the optimal hedging strategy is characterized as a solution of a linear forward equation.2000 Mathematics Subject Classification: 90A09, 60H30, 90C39.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.