Spatially separated electron systems remain strongly coupled by
electron-electron interactions even when they cannot exchange particles,
provided that the layer separation d is comparable to a characteristic distance
l between charge carriers within layers. One of the consequences of this remote
coupling is a phenomenon called Coulomb drag, in which an electric current
passed through one of the layers causes frictional charge flow in the other
layer. Previously, only the regime of weak (d>>l) to intermediate (d ~ l)
coupling could be studied experimentally. Here we use graphene-BN
heterostructures with d down to 1 nm to probe interlayer interactions and
Coulomb drag in the limit d<
The nematic phase transition in electronic liquids, driven by Coulomb interactions, represents a new class of strongly correlated electronic ground states. We studied suspended samples of bilayer graphene, annealed so that it achieves very high quasiparticle mobilities (greater than 10(6) square centimers per volt-second). Bilayer graphene is a truly two-dimensional material with complex chiral electronic spectra, and the high quality of our samples allowed us to observe strong spectrum reconstructions and electron topological transitions that can be attributed to a nematic phase transition and a decrease in rotational symmetry. These results are especially surprising because no interaction effects have been observed so far in bilayer graphene in the absence of an applied magnetic field.
We report experimental data and theoretical analysis of Coulomb drag between two closely positioned graphene monolayers in a weak magnetic field. Close enough to the neutrality point, the coexistence of electrons and holes in each layer leads to a dramatic increase of the drag resistivity. Away from charge neutrality, we observe nonzero Hall drag. The observed phenomena are explained by decoupling of electric and quasiparticle currents which are orthogonal at charge neutrality. The sign of magnetodrag depends on the energy relaxation rate and geometry of the sample.
Article 25fa pilot End User AgreementThis publication is distributed under the terms of Article 25fa of the Dutch Copyright Act (Auteurswet) with explicit consent by the author. Dutch law entitles the maker of a short scientific work funded either wholly or partially by Dutch public funds to make that work publicly available for no consideration following a reasonable period of time after the work was first published, provided that clear reference is made to the source of the first publication of the work.This publication is distributed under The Association of Universities in the Netherlands (VSNU) 'Article 25fa implementation' pilot project. In this pilot research outputs of researchers employed by Dutch Universities that comply with the legal requirements of Article 25fa of the Dutch Copyright Act are distributed online and free of cost or other barriers in institutional repositories. Research outputs are distributed six months after their first online publication in the original published version and with proper attribution to the source of the original publication.You are permitted to download and use the publication for personal purposes. All rights remain with the author(s) and/or copyrights owner(s) of this work. Any use of the publication other than authorised under this licence or copyright law is prohibited.If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website.
We present a microwave realization of finite tight-binding graphene-like structures. The structures are realized using disks with a high index of refraction. The disks are placed on a metallic surface while a second surface is adjusted atop the discs, such that the waves coupling the disks in the air are evanescent, leading to the tight-binding behavior. In reflection measurements the Dirac point and a linear increase close to the Dirac point is observed, if the measurement is performed inside the sample. Resonances due to edge states are found close to the Dirac point if the measurements are performed at the zigzag-edge or at the corner in case of a broken benzene ring.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.