We provide flux-and volume-limited galaxy group and cluster catalogues based on the spectroscopic sample of the galaxies of SDSS data release 10. We used a modified friends-of-friends method with a variable linking length in the transverse and radial directions to identify as many realistic groups as possible. The flux-limited catalogue incorporates galaxies down to m r = 17.77 mag. It includes 588 193 galaxies and 82 458 groups. The volume-limited catalogues are complete for absolute magnitudes down to M r,lim = −18.0, −18.5, −19.0, −19.5, −20.0, −20.5, and −21.0; the completeness is achieved within different spatial volumes. Our analysis shows that flux-and volume-limited group samples are well compatible, especially for the larger groups/clusters. Dynamical mass estimates based on radial velocity dispersions and group extent in the sky were added to the extracted groups.
Aims. Stellar mass distribution in the Andromeda galaxy (M 31) is estimated using optical and near-infrared imaging data. Combining the derived stellar mass model with various kinematical data, properties of the dark matter (DM) halo of the galaxy are constrained. Methods. SDSS observations through the ugriz filters and the Spitzer imaging at 3.6 microns are used to sample the spectral energy distribution (SED) of the galaxy at each imaging pixel. Intrinsic dust extinction effects are taken into account by using far-infrared observations. Synthetic SEDs created with different stellar population synthesis models are fitted to the observed SEDs, providing estimates for the stellar mass surface density at each pixel. The stellar mass distribution of the galaxy is described with a 3-dimensional model consisting of a nucleus, a bulge, a disc, a young disc and a halo component, each following the Einasto density distribution (relations between different functional forms of the Einasto density distribution are given in Appendix B). By comparing the stellar mass distribution to the observed rotation curve and kinematics of outer globular clusters and satellite galaxies, the DM halo parameters are estimated. Results. Stellar population synthesis models suggest that M 31 is dominated by old ( > ∼ 7 Gyr) stars throughout the galaxy, with the lower limit for the stellar mass- (0.6−2.3 TeV/c 2 cm −3 ), depending on the stellar mass model. The central density of the DM halo is comparable to that of nearby dwarf galaxies, low-surface-brightness galaxies and distant massive disc galaxies, thus the evolution of central DM halo properties seems to be regulated by similar processes for a broad range of halo masses, environments, and cosmological epochs.
Context. Groups form the most abundant class of galaxy systems. They act as the principal drivers of galaxy evolution and can be used as tracers of the large-scale structure and the underlying cosmology. However, the detection of galaxy groups from galaxy redshift survey data is hampered by several observational limitations. Aims. We improve the widely used friends-of-friends (FoF) group finding algorithm with membership refinement procedures and apply the method to a combined dataset of galaxies in the local Universe. A major aim of the refinement is to detect subgroups within the FoF groups, enabling a more reliable suppression of the fingers-of-God effect. Methods. The FoF algorithm is often suspected of leaving subsystems of groups and clusters undetected. We used a galaxy sample built of the 2MRS, CF2, and 2M++ survey data comprising nearly 80 000 galaxies within the local volume of 430 Mpc radius to detect FoF groups. We conducted a multimodality check on the detected groups in search for subgroups. We furthermore refined group membership using the group virial radius and escape velocity to expose unbound galaxies. We used the virial theorem to estimate group masses. Results. The analysis results in a catalogue of 6282 galaxy groups in the 2MRS sample with two or more members, together with their mass estimates. About half of the initial FoF groups with ten or more members were split into smaller systems with the multimodality check. An interesting comparison to our detected groups is provided by another group catalogue that is based on similar data but a completely different methodology. Two thirds of the groups are identical or very similar. Differences mostly concern the smallest and largest of these other groups, the former sometimes missing and the latter being divided into subsystems in our catalogue.
Context. Galaxy groups and clusters are the main tools used to test cosmological models and to study the environmental effect of galaxy formation. Aims. This work provides a catalogue of galaxy groups and clusters, as well as potentially merging systems based on the SDSS main galaxy survey. Methods. We identified galaxy groups and clusters using the modified friends-of-friends (FoF) group finder designed specifically for flux-limited galaxy surveys. The FoF group membership is refined by multimodality analysis to find subgroups and by using the group virial radius and escape velocity to expose unbound galaxies. We look for merging systems by comparing distances between group centres with group radii. Results. The analysis results in a catalogue of 88 662 galaxy groups with at least two members. Among them are 6873 systems with at least six members which we consider to be more reliable groups. We find 498 group mergers with up to six groups. We performed a brief comparison with some known clusters in the nearby Universe, including the Coma cluster and Abell 1750. The Coma cluster in our catalogue is a merging system with six distinguishable subcomponents. In the case of Abell 1750 we find a clear sign of filamentary infall toward this cluster. Our analysis of mass-to-light ratio (M/L) of galaxy groups reveals that M/L slightly increases with group richness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.