In paper I [Groma, Ung~ir & Wilkens (1988). J. Appl. Cryst. 21,[47][48][49][50][51][52][53] a theory was developed to interpret the asymmetric X-ray line broadening of plastically deformed crystals. It was shown that the dislocation structure can be described by five distinct parameters, namely the dislocation density, the mean quadratic spatial fluctuation of the dislocation density, the effective outer cut-off radius, the dipole polarization and the spatial fluctuation of the dipole polarization of the dislocation structure. In this paper a procedure is developed to evaluate these parameters from the Fourier transform of the line profiles. The theory and this procedure are tested by applying it to the asymmetric line profiles of tensile-deformed Cu single crystals orientated for ideal multiple slip. The asymmetry of these profiles is assigned to the dipole polarization of the dislocation cell structure and is directly correlated to residual long-range internal stresses. It is shown that the data can be interpreted in terms of the quasi-composite model of the dislocation cell structure developed earlier for the same material.
The Fourier transform of X-ray line profilesIn paper I it was shown that within the formalisms of the kinematical scattering of X-rays and the linear elasticity theory of dislocations the Fourier coefficients, A(n), of X-ray line profiles can be
Energy efficiency is motivating the search for new high-temperature (high-T) metals. Some new body-centered-cubic (BCC) random multicomponent “high-entropy alloys (HEAs)” based on refractory elements (Cr-Mo-Nb-Ta-V-W-Hf-Ti-Zr) possess exceptional strengths at high temperatures but the physical origins of this outstanding behavior are not known. Here we show, using integrated in-situ neutron-diffraction (ND), high-resolution transmission electron microscopy (HRTEM), and recent theory, that the high strength and strength retention of a NbTaTiV alloy and a high-strength/low-density CrMoNbV alloy are attributable to edge dislocations. This finding is surprising because plastic flows in BCC elemental metals and dilute alloys are generally controlled by screw dislocations. We use the insight and theory to perform a computationally-guided search over 107 BCC HEAs and identify over 106 possible ultra-strong high-T alloy compositions for future exploration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations –citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.