The permeation characteristics of cellulose acetate membranes in separation of polymers from their aqueous solutions were investigated by changing the preparation conditions of the membranes, that are the solvent evaporation period and the casting solution composition consisting of a mixture of cellulose acetate (CA), acetone (A), and formamide (FA). The rates of pure water permeability were influenced remarkably by the solvent evaporation period and the casting solution composition. When the solvent evaporation period was short, the rates of pure water permeability increased with a decrease in A/CA, increase in FA/A, and increase in FA/CA in the casting solution. From the experimental results using poly(vinyl alcohol) as poly(ethylene glycol) as feed solute, it was seen that the changes of solvent evaporation period and casting solution composition related to the change of microporous structure of the resulting membranes. The effect of feed concentration and operating pressure on the permeation characteristics were also studied. There was found a concentration polarization of poly(vinyl alcohol) molecules on the surface of the membrane, and a compaction of the membrane occurred under pressure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.