We have studied single-electron turnstile operation in common-gated one-dimensional arrays of four tunnel junctions ͑three dots͒ having inhomogeneous junction capacitances. Analytical calculations show that the source-drain voltage range with a current plateau due to single-electron turnstile operation is increased when the outer two tunnel capacitances are adjusted to be smaller than the inner ones. In fact, we have demonstrated in phosphorous-doped silicon-on-insulator field-effect transistors ͑FETs͒ that back-gate voltage works to assist the turnstile operation, which is primarily ascribed to electrical control of junction capacitance dispersion, i.e., reduction in outer junction capacitances. As a result, postfabrication control of capacitance dispersion in multijunction FETs can be achieved, resulting in successful turnstile operation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.