With the revolution that happened in electronic gadgets in the past few years, information sharing has evolved into a new era that can spread the news globally in a fraction of minutes, either through yellow media or through satellite communication without any proper authentication. At the same time, all of us are aware that with the increase of different social media platforms, many organizations try to grab people's attention by creating fake news about celebrities, politicians (or) politics, branded products, and others. There are three ways to generate fake news: tampering with an image using advanced morphing tools; this is generally a popular technique while posting phony information about the celebrities (or) cybercrimes related to women. The second one deals with the reposting of the old happenings with new fake content injected into it. For example, in generally few social media platforms either to increase their TRP ratings or to expand their subscribers, they create old news that happened somewhere years ago as latest one with new fake content like by changing the date, time, locations, and other important information and tries to make them viral across the globe. The third one deals with the image/video real happened at an event or place, but media try to change the content with a false claim instead of the original one that occurred. A few decades back, researchers started working on fake news detection topics with the help of textual data. In the recent era, few researchers worked on images and text data using traditional and ensemble deep and machine learning algorithms, but they either suffer from overfitting problems due to insufficient data or unable to extract the complex semantic relations between documents. The proposed system designs a transfer learning environment where Neural Style Transfer Learning takes care of the size and quality of the datasets. It also enhances the auto-encoders by customizing the hidden layers to handle complex problems in the real world.
Fake news detection on job advertisements has grabbed the attention of many researchers over past decade. Various classifiers such as Support Vector Machine (SVM), XGBoost Classifier and Random Forest (RF) methods are greatly utilized for fake and real news detection pertaining to job advertisement posts in social media. Bi-Directional Long Short-Term Memory (Bi-LSTM) classifier is greatly utilized for learning word representations in lower-dimensional vector space and learning significant words word embedding or terms revealed through Word embedding algorithm. The fake news detection is greatly achieved along with real news on job post from online social media is achieved by Bi-LSTM classifier and thereby evaluating corresponding performance. The performance metrics such as Precision, Recall, F1-score, and Accuracy are assessed for effectiveness by fraudulency based on job posts. The outcome infers the effectiveness and prominence of features for detecting false news. .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.