Wet chemical synthesis of hydroxyapatite (HAp) nanostructures was carried out with different solution pH values (9, 10 and 11) and sintering temperatures (300°C, 500°C, 700°C and 900°C). The effects of pH and sintering temperature on the structural and morphological properties of nanocrystalline HAp powders were presented. Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and scanning electron microscopy (SEM) analysis were performed to obtain the crystalline structure, chemical composition, morphology and particle size of the HAp powders. The TEM analysis is used in order to observe the rod- and flake-like HAp structures. XRD confirms the presence of both HAp hexagonal and monetite phases, although the monetite phase was less abundant in the resultant powders. Increase in pH reduced the monetite phase and enhanced Ca/P ratio from 1.7 to 1.83. Additionally, an increment in sintering temperature increased the crystallite size from 20 to 56 nm. The SEM analysis revealed the formation of semi-spherical and flake-like HAp structures with preferential flake morphology. An increase in pH and sintering temperature resulted in the growth and coalescence of crystals resulting in a porous capsular morphology. The FTIR analysis confirmed the reduction of carbonate stretching modes with an increase in pH and H–O–H antisymmetric stretching mode is eliminated for powders sintered at 900°C confirming the formation of stable and porous HAp powders.
LaCoO3nanoparticles with perovskite-type structure were prepared by a microwave-assisted colloidal method. Lanthanum nitrate, cobalt nitrate, and ethylenediamine were used as precursors and ethyl alcohol as solvent. The thermal decomposition of the precursors leads to the formation of LaCoO3from a temperature of 500°C. The structural, morphological, and compositional properties of LaCoO3nanoparticles were studied in this work by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and atomic force microscopy (AFM). Pellets were manufactured in order to test the gas sensing properties of LaCoO3powders in carbon monoxide (CO) and propane (C3H8) atmospheres. Agglomerates of nanoparticles with high connectivity, forming a porous structure, were observed from SEM and TEM analysis. LaCoO3pellets presented a high sensitivity in both CO and C3H8at different concentrations and operating temperatures. As was expected, sensitivity increased with the gas concentration and operation temperature increase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.