We deposited epitaxial Ba0.4Sr0.6TiO3 (BST) films via laser ablation on MgO and LaAlO3 (LAO) substrates for tunable microwave devices. Postdeposition anneals (∼1100 °C in O2) improved the morphology and overall dielectric properties of films on both substrates, but shifted the temperature of maximum dielectric constant (Tmax) up for BST/LAO and down for BST/MgO. These substrate-dependent Tmax shifts had opposite effects on the room-temperature dielectric properties. Overall, BST films on MgO had the larger maximum dielectric constant (ε/ε0⩾6000) and tunability (Δε/ε⩾65%), but these maxima occurred at 227 K. 30 GHz phase shifters made from similar films had figures of merit (ratio of maximum phase shift to insertion loss) of ∼45°/dB and phase shifts of ∼400° under 500 V (∼13 V/μm) bias, illustrating their utility for many frequency-agile microwave devices.
We report the in-plane (a) and out-of-plane (c) lattice parameters of epitaxial laser-ablated Ba0.4Sr0.6TiO3 films on MgO for a range of O2 deposition pressures (40–250 mTorr) near the observed transition from a<c to a>c. From these lattice parameters, we calculate the residual strain and stress in terms of hydrostatic and biaxial components. Both components increase sharply with O2 pressure between 85 and 100 mTorr, consistent with ion peening effects. Postdeposition annealing decreases the hydrostatic strain, but increases the biaxial tension. For both as-deposited and annealed films, we obtain samples with no biaxial strain (i.e., a=c), within experimental uncertainty. Overall, the strain is a combination of hydrostatic and biaxial components, both of which affect the dielectric response. Therefore, consideration and control of both types of strain is important for the optimum performance of devices such as tunable microwave devices and high-density memories.
Direct writing of solar cell components is an attractive processing approach. We have fabricated a 6.8% Si solar cell using silver ink based electrodes. Ohmic contact through the antireflection (AR) coating was obtained with pure Ag electrodes at 850 0 C. We also report on highly conductive silver metallizations and initial results on direct-write TCO demonstrating a 100micron spatial resolution produced by inkjet printing.
The influence of varying oxygen pressure P(O2) during the growth of Ba0.4Sr0.6TiO3 thin films is investigated using dielectric and local optical probes. A transition from in-plane to out-of-plane ferroelectricity is observed with increasing P(O2). Signatures of in-plane and out-of-plane ferroelectricity are identified using dielectric response and time-resolved confocal scanning optical microscopy (TRCSOM). At the crossover pressure between in-plane and out-of-plane polarization (Pc=85 mTorr), TRCSOM measurements reveal a soft, highly dispersive out-of-plane polarization that reorients in plane under modest applied electric fields. At higher deposition pressures, the out-of-plane polarization is hardened and is less dispersive at microwave frequencies, and the dielectric tuning is suppressed. Nanopolar reorientation is believed to be responsible for the marked increase in dielectric tuning at P(O2)=Pc.
Direct-write technologies offer the potential for low-cost materials-efficient deposition of contact metallizations for photovoltaics. We report on the inkjet printing of metal organic decomposition (MOD) inks with and without nanoparticle additions. Near-bulk conductivity of printed and sprayed metal films has been achieved for Ag and Ag nanocomposites. Good adhesion and ohmic contacts with a measured contact resistance of 400μΩ•cm2 have been observed between the sprayed silver films and a heavily doped n-type layer of Si. Silver deposited using the MOD ink burns through the Si3N4 antireflection coating when annealed at 850°C to form an ohmic contact to the n-Si underneath. An active solar cell device was fabricated using a top contact that was spray printed using the Ag MOD ink. Inkjet printed films show adhesion differences as a function of the process temperature and solvent. Silver lines with good adhesion and conductivity have been printed on glass with 100 μm resolution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.