PurposeThis paper tactics to implement the attack detection in medical Internet of things (IoT) devices using improved deep learning architecture for accomplishing the concept bring your own device (BYOD). Here, a simulation-based hospital environment is modeled where many IoT devices or medical equipment are communicated with each other. The node or the device, which is creating the attack are recognized with the support of attribute collection. The dataset pertaining to the attack detection in medical IoT is gathered from each node that is considered as features. These features are subjected to a deep belief network (DBN), which is a part of deep learning algorithm. Despite the existing DBN, the number of hidden neurons of DBN is tuned or optimized correctly with the help of a hybrid meta-heuristic algorithm by merging grasshopper optimization algorithm (GOA) and spider monkey optimization (SMO) in order to enhance the accuracy of detection. The hybrid algorithm is termed as local leader phase-based GOA (LLP-GOA). The DBN is used to train the nodes by creating the data library with attack details, thus maintaining accurate detection during testing.Design/methodology/approachThis paper has presented novel attack detection in medical IoT devices using improved deep learning architecture as BYOD. With this, this paper aims to show the high convergence and better performance in detecting attacks in the hospital network.FindingsFrom the analysis, the overall performance analysis of the proposed LLP-GOA-based DBN in terms of accuracy was 0.25% better than particle swarm optimization (PSO)-DBN, 0.15% enhanced than grey wolf algorithm (GWO)-DBN, 0.26% enhanced than SMO-DBN and 0.43% enhanced than GOA-DBN. Similarly, the accuracy of the proposed LLP-GOA-DBN model was 13% better than support vector machine (SVM), 5.4% enhanced than k-nearest neighbor (KNN), 8.7% finer than neural network (NN) and 3.5% enhanced than DBN.Originality/valueThis paper adopts a hybrid algorithm termed as LLP-GOA for the accurate detection of attacks in medical IoT for improving the enhanced security in healthcare sector using the optimized deep learning. This is the first work which utilizes LLP-GOA algorithm for improving the performance of DBN for enhancing the security in the healthcare sector.
The skyline queries are the best tools to be used in distributed multi
In today's dynamic environment, it is possible to accomplish various tasks through the use of machine learning methods. In this investigation, we provide an intricate explanation of the procedures and structures utilized in machine learning. According to future forecasts, it is possible that machine learning will generate the most fitting hypotheses to account for its observable phenomenon. As a result of the abundance of information available, it is not imperative to assign every single data point a specific name, thereby promoting the advancement of its unsupervised learning capabilities in the meantime. It is anticipated that the neural network arrangements will become increasingly unpredictable as they distribute semantic details into distinct categories. In addition, deep learning is set to become even more robust with better adaptation assistance, and utilizing these sites of interest could facilitate the completion of a greater number of tasks.
Background: In recent times, medical technology has generated massive reports such as scanned medical images and electronic patient accounts. These reports are necessary to be stored in the highly secured platform for further reference. Traditional storage systems are infeasible for storing massive data. In addition, it suffers to provide secure storage and privacy protection at the time of medical services. It is necessary to provide secure storage and full utilization of personal medical records for the common people in practice. The healthcare system based on IoT enhances the support for the patients and doctors in diagnosing the sufferers at an accurate time using the monitored health data. Yet, doctors make an inappropriate decision regarding the sufferer’s sickness when the information regarding health data saved in the cloud gets lost or hacked owing to an external attack or also power failure. Hence, it is highly essential for verifying the truthfulness of the sufferer’s information regarding health data saved on the cloud.Hypothesis: The major intention of this task is to adopt a new chaotic-based healthcare medical data storage system for storing medical data (medical images) with high protection. Methodology: Initially, the input medical images are gathered from the benchmark datasets concerning different modalities. The collected medical images are enciphered by developing Hybrid Chaotic Map by adapting the 2D-Logistic Chaotic Map (2DLCM), and Piece-Wise Linear Chaotic Map (PWLCM) referred to as Hybrid Logistic Piece-Wise Chaotic Map (HLPWCM). An Optimized Recurrent Neural Network (O-RNN) is proposed for key generation using Best Fitness-based Coefficient vector improved Spotted Hyena Optimizer (BF-CSHO). The O-RNN-based key generation utilizes the extracted image features like first and second-order statistical features and the targets are acquired as a unique encrypted key, which is used for securing the medical data. The same BF-CSHO is used for improving the training algorithm (weight optimization) of RNN to minimize the Mean Absolute Error (MAE) between the cipher (encrypted) images and original images. Results: From the result analysis, the suggested BF-CSHO-RNN-HLPWCM, by considering the image size at [Formula: see text] shows 10.4%, 8.5%, 3.97%, 0.62%, 3.88%, 2.40%, and 7.82% provides better computational efficiency than LCM, PWLCM, LPWCM, PSO-RNN-HLPWCM, JA-RNN-HLPWCM, GWO-RNN-HLPWCM, and SHO-RNN-HLPWCM, respectively. Conclusion: Thus, the simulation findings show the effective efficiency of the offered method owing to the security of the stored medical data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.