Nowadays, COVID severity prediction has attracted widely in medical research because of the disease severity. Hence, the image processing application is also utilized to analyze COVID severity identification using lungs X-ray images. Thus, several intelligent schemes were employed to detect the COVID-affected part of the lungs X-ray images. However, the traditional neural approaches reported less severity classification accuracy due to the image complexity score. So, the present study has presented a novel chimp-based Adaboost Severity Analysis (CbASA) implemented in the MATLAB environment. Hence, the lung's X-ray images are utilized to test the working performance of the designed model. All public imaging data sources contain more noisy features, so the noise features are removed in the initial hidden layer of the novel CbASA then the noise-free data is imported into the classification phase. Feature extraction, segmentation, and severity specification have been performed in the classification layer. Finally, the performance of the classification score has been measured and compared with other models. Subsequently, the presented novel CbASA has earned the finest classification outcome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.