Argonaute proteins are essential components of the molecular machinery that drives RNA silencing. In Drosophila, different members of the Argonaute family of proteins have been assigned to distinct RNA silencing pathways. While Ago1 is required for microRNA function, Ago2 is a crucial component of the RNA-induced silencing complex in siRNAtriggered RNA interference. Drosophila Ago2 contains an unusual amino-terminus with two types of imperfect glutamine-rich repeats (GRRs) of unknown function. Here we show that the GRRs of Ago2 are essential for the normal function of the protein. Alleles with reduced numbers of GRRs cause specific disruptions in two morphogenetic processes associated with the midblastula transition: membrane growth and microtubule-based organelle transport. These defects do not appear to result from disruption of siRNA-dependent processes but rather suggest an interference of the mutant Ago2 proteins in an Ago1-dependent pathway. Using loss-of-function alleles, we further demonstrate that Ago1 and Ago2 act in a partially redundant manner to control the expression of the segment-polarity gene wingless in the early embryo. Our findings argue against a strict separation of Ago1 and Ago2 functions and suggest that these proteins act in concert to control key steps of the midblastula transition and of segmental patterning.
We study the formation of nanostructures with alternating stripes composed of bulk-immiscible adsorbates during submonolayer heteroepitaxy. We evaluate the influence of two mechanisms considered in the literature: (i) strain relaxation by alternating arrangement of the adsorbate species, and (ii) kinetic segregation due to chemically induced diffusion barriers. A model ternary system of two adsorbates with opposite misfit relative to the substrate, and symmetric binding is investigated by off-lattice as well as lattice kinetic Monte Carlo simulations. We find that neither of the mechanisms (i) or (ii) alone can account for known experimental observations. Rather, a combination of both is needed. We present an off-lattice model which allows for a qualitative reproduction of stripe patterns as well as island ramification in agreement with recent experimental observations for CoAg/Ru(0001) [R. Q. Hwang, Phys. Rev. Lett. 76, 4757 (1996)]. The quantitative dependencies of stripe width and degree of island ramification on the misfit and interaction strength between the two adsorbate types are presented. Attempts to capture essential features in a simplified lattice gas model show that a detailed incorporation of non-local effects is required.
We introduce an anisotropic two-dimensional lattice gas model of metal terminated II-VI(001) semiconductor surfaces. Important properties of this class of materials are represented by effective NN and NNN interactions, which result in the competition of two vacancy structures on the surface. We demonstrate that the experimentally observed c(2×2)-(2×1) transition of the CdTe(001) surface can be understood as a phase transition in thermal equilibrium. The model is studied by means of transfer-matrix and Monte Carlo techniques. The analysis shows that the small energy difference of the competing reconstructions determines to a large extent the nature of the different phases. Possible implications for further experimental research are discussed.
We present a zinc-blende lattice gas model of II-VI(001) surfaces, which is investigated by means of Kinetic Monte Carlo (KMC) simulations. Anisotropic effective interactions between surface metal atoms allow for the description of, e.g., the sublimation of CdTe(001), including the reconstruction of Cd-terminated surfaces and its dependence on the substrate temperature T . Our model also includes Te-dimerization and the potential presence of excess Te in a reservoir of weakly bound atoms at the surface. We study the self-regulation of atomic layer epitaxy (ALE) and demonstrate how the interplay of the reservoir occupation with the surface kinetics results in two different regimes: at high T the growth rate is limited to 0.5 layers per ALE cycle, whereas at low enough T each cycle adds a complete layer of CdTe. The transition between the two regimes occurs at a characteristic temperature and its dependence on external parameters is studied. Comparing the temperature dependence of the ALE growth rate in our model with experimental results for CdTe we find qualitative agreement.
First, we present a two-dimensional lattice gas model with anisotropic interactions which explains the experimentally observed transition from a dominant c(2 × 2) ordering of the CdTe(001) surface to a local (2 × 1) arrangement of the Cd atoms as an equilibrium phase transition. Its analysis by means of transfer-matrix and Monte Carlo techniques shows that the small energy difference of the competing reconstructions determines to a large extent the nature of the different phases. Then, this lattice gas is extended to a model of a three-dimensional crystal which qualitatively reproduces many of the characteristic features of CdTe which have been observed during sublimation and atomic layer epitaxy.Within the last years, potential applications of electronic devices based on II-VI semiconductors have inspired basic research concerning for instance the surface reconstructions of these materials. For CdTe, a fairly complete qualitative phase diagram of (001) surfaces has been obtained [1]. An understanding of the interplay of these reconstructions with techniques like molecular beam epitaxy (MBE) or atomic layer epitaxy (ALE) is desirable both for technological applications and for the theory of crystal growth. From the theoretical point of view, the case of CdTe is especially interesting, since it exhibits a phase transition which involves competing reconstructions at typical MBE growth temperatures. While there have been a few models of MBE, especially for GaAs which take into account the effects of surface reconstructions (e.g. [2]), phase transitions between different reconstructions have not been considered in growth
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.