Summary The role of high‐flow nasal oxygen in paediatric anaesthesia has been emerging in recent years. However, literature regarding its benefits in paediatric difficult airway management is limited. In this case report, we describe the use of high‐flow nasal oxygen during airway management of a child with a difficult airway due to epidermolysis bullosa dystrophica in whom the use of a facemask would have been potentially harmful. Deep sedation was achieved with propofol and remifentanil while maintaining spontaneous breathing before flexible bronchoscopic tracheal intubation was attempted. However, on attempted tracheal intubation difficulty was encountered due to poor visualisation and contact bleeding. Tracheal intubation was eventually successful after converting to videolaryngoscopy. Oxygenation was maintained throughout the process despite deep sedation and a long procedure time. Moreover, no skin abrasions or mucosal injury resulted from the use of high‐flow nasal oxygen. We conclude that high‐flow nasal oxygen has a valuable role during airway management for a child with a predicted difficult airway when the use of a facemask would have been potentially harmful.
Head-tilt maneuver assists with achieving airway patency during resuscitation. However, the relationship between angle of head-tilt and airway patency has not been defined. Our objective was to define an optimal head-tilt position for airway patency in neonates (age: 0–28 days) and young infants (age: 29 days–4 months). We performed a retrospective study of head and neck magnetic resonance imaging (MRI) of neonates and infants to define the angle of head-tilt for airway patency. We excluded those with an artificial airway or an airway malformation. We defined head-tilt angle a priori as the angle between occipito-ophisthion line and ophisthion-C7 spinous process line on the sagittal MR images. We evaluated medical records for Hypoxic Ischemic Encephalopathy (HIE) and exposure to sedation during MRI. We analyzed MRI of head and neck regions of 63 children (53 neonates and 10 young infants). Of these 63 children, 17 had evidence of airway obstruction and 46 had a patent airway on MRI. Also, 16/63 had underlying HIE and 47/63 newborn infants had exposure to sedative medications during MRI. In spontaneously breathing and neurologically depressed newborn infants, the head-tilt angle (median ± SD) associated with patent airway (125.3° ± 11.9°) was significantly different from that of blocked airway (108.2° ± 17.1°) (Mann Whitney U-test, p = 0.0045). The logistic regression analysis showed that the proportion of patent airways progressively increased with an increasing head-tilt angle, with > 95% probability of a patent airway at head-tilt angle 144–150°.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.