The effect of salinity on resting oxygen uptake was measured in the perch Perca fluviatilis and available information on oxygen uptake in teleost species at a variety of salinities was reviewed. Trans-epithelial ion transport against a concentration gradient requires energy and exposure to salinities osmotically different from the body fluids therefore imposes an energetic demand that is expected to be lowest in brackish water compared to fresh and sea water. Across species, there is no clear trend between oxygen uptake and salinity, and estimates of cost of osmotic and ionic regulation vary from a few per cent to >30% of standard metabolism.
SUMMARY
Environmental hypercapnia induces a respiratory acidosis that is usually compensated within 24-96 h in freshwater fish. Water ionic composition has a large influence on both the rate and degree of pH recovery during hypercapnia. Waters of the Amazon are characteristically dilute in ions, which may have consequences for acid-base regulation during environmental hypercapnia in endemic fishes. The armoured catfish Liposarcus pardalis, from the Amazon, was exposed to a water PCO2 of 7, 14 or 42 mmHg in soft water (in μmol l-1: Na+, 15,Cl-, 16, K+, 9, Ca2+, 9, Mg2+, 2). Blood pH fell within 2 h from a normocapnic value of 7.90±0.03 to 7.56±0.04, 7.34±0.05 and 6.99±0.02, respectively. Only minor extracellular pH (pHe) recovery was observed in the subsequent 24-96 h. Despite the pronounced extracellular acidosis,intracellular pH (pHi) of the heart, liver and white muscle was tightly regulated within 6 h (the earliest time at which these parameters were measured) via a rapid accumulation of intracellular HCO3-. While most fish regulate pHi during exposure to environmental hypercapnia, the time course for this is usually similar to that for pHe regulation. The degree of extracellular acidosis tolerated by L. pardalis, and the ability to regulate pHi in the face of an extracellular acidosis, are the greatest reported to date in a teleost fish. The preferential regulation of pHi in the face of a largely uncompensated extracellular acidosis in L. pardalis is rare among vertebrates, and it is not known whether this is associated with the ability to air-breathe and tolerate aerial exposure, or living in water dilute in counter ions, or with other environmental or evolutionary selective pressures. The ubiquity of this strategy among Amazonian fishes and the mechanisms employed by L. pardalis are clearly worthy of further study.
During the past decade, the culture of air-breathing fish species has increased dramatically and is now a significant global source of protein for human consumption. This development has generated a need for specific information on how to maximize growth and minimize the environmental effect of culture systems. Here, the existing data on metabolism in air-breathing fishes are reviewed, with the aim of shedding new light on the oxygen requirements of air-breathing fishes in aquaculture, reaching the conclusion that aquatic oxygenation is much more important than previously assumed. In addition, the possible effects on growth of the recurrent exposure to deep hypoxia and associated elevated concentrations of carbon dioxide, ammonia and nitrite, that occurs in the culture ponds used for air-breathing fishes, are discussed. Where data on air-breathing fishes are simply lacking, data for a few water-breathing species will be reviewed, to put the physiological effects into a growth perspective. It is argued that an understanding of air-breathing fishes' respiratory physiology, including metabolic rate, partitioning of oxygen uptake from air and water in facultative air breathers, the critical oxygen tension, can provide important input for the optimization of culture practices. Given the growing importance of air breathers in aquaculture production, there is an urgent need for further data on these issues.
Oxygen uptake (M O 2 ) and critical oxygen tension (P crit ) were measured in resting perch Perca fluviatilis that were either fasting or digesting. Digestion caused M O 2 to double (from 61 to 117 mg O 2 kg −1 h −1 ) and was associated with a rise in P crit (from 3·4 to 4·9 kPa), showing that the animal's digestive state must be considered when assessing the effect of hypoxia in natural conditions, and when defining optimal oxygen conditions in aquaculture.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.