The penalty avoiding rational policy making algorithm (PARP) [1] previously improved to save memory and cope with uncertainty, i.e., IPARP [2], requires that states be discretized in real environments with continuous state spaces, using function approximation or some other method. Especially, in PARP, a method that discretizes state using a basis functions is known [3]. Because this creates a new basis function based on the current input and its next observation, however, an unsuitable basis function may be generated in some asynchronous multiagent environments. We therefore propose a uniform basis function and range extent of the basis function is estimated before learning. We show the effectiveness of our proposal using a soccer game task called “Keepaway.”
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.