Chicken infectious anemia virus (CIAV) is a unique infectious agent with an amino acid composition that has been found to be remarkably conserved even in isolates from different parts of the world. We have characterized field isolates of CIAV which vary significantly in terms of their abilities to replicate in culture, demonstrating a biological difference between isolates. Two sublines of MDCC-MSB1 cells that differ in their abilities to support CIAV were identified. In the MSB1(S) subline the CIA-1 isolate of CIAV was found to be less cytopathogenic than the prototype Cux-1(C) isolate; the MSB1(L) subline, which supports Cux-1(C) replication, was found to be nonpermissive for CIA-1. Alignments of the VP1 sequences of previously examined isolates with those of the field isolates CIA-1 and L-028 and the culture-adapted ConnB isolate revealed a previously unreported hypervariable region spanning amino acid positions 139 to 151. Chimeras of Cux-1(C) and CIA-1 were constructed to examine the potential for this region to affect cytopathogenicity. Transfer of a 316-bp region of Cux-1(C) open reading frame 1 into CIA-1 produced a virus with a cytopathogenic profile typical of Cux-1(C), indicating that one or both of the amino acid differences at positions 139 and 144 affect the rate of replication or the spread of infection. Transfection experiments with additional chimeras indicated that the inability of CIA-1 to replicate in MSB1(L) cells is mediated by a larger region of the genome which contains the hypervariable region in addition to upstream amino acid differences. Analysis of chimeras excluding the entire region of open reading frame 1 suggested the presence of a secondary mediator in the progression of infection in culture that was localized to a region containing a single nucleotide difference which results in amino acid differences in both VP2 (V-153) and the nuclear localization signal of VP3 (C-118). Immunofluorescence assays indicated an increased cytoplasmic distribution of VP3 and a general lack of VP3-associated apoptotic bodies in infections of CIA-1 and chimeras containing V-153 or C-118, as opposed to a primarily nuclear distribution and association with well-formed apoptotic bodies in Cux-1(C)-infected cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.