The CALICE collaboration is studying the design of high performance electromagnetic and hadronic calorimeters for future International Linear Collider detectors. For the electromagnetic calorimeter, the current baseline choice is a high granularity sampling calorimeter with tungsten as absorber and silicon detectors as sensitive material. A "physics prototype" has been constructed, consisting of thirty sensitive layers. Each layer has an active area of 18 × 18 cm 2 and a pad size of 1 × 1 cm 2 . The absorber thickness totals 24 radiation lengths. It has been exposed in 2006 and 2007 to electron and hadron beams at the DESY and CERN beam test facilities, using a wide range of beam energies and incidence angles. In this paper, the prototype and the data acquisition chain are described and a summary of the data taken in the 2006 beam tests is presented. The methods used to subtract the pedestals and calibrate the detector are detailed. The signal-overnoise ratio has been measured at 7.63 ± 0.01. Some electronics features have been observed; these lead to coherent noise and crosstalk between pads, and also crosstalk between sensitive and passive areas. The performance achieved in terms of uniformity and stability is presented.
The authors wish to acknowledge Natalia Zaitseva of LLNL for helpful discussions regarding scintillator development. We also thank Ultralytics and Struck engineers for their support and useful discussions. The research of F.
A data acquisition (DAQ) system has been developed which will read out and control calorimeters serving as prototype systems for a future detector at an electron-positron linear collider. This is a modular, flexible and scalable DAQ system in which the hardware and signals are standards-based, using FPGAs and serial links. The idea of a backplaneless system was also pursued with a commercial development board housed in a PC and a chain of concentrator cards between it and the detector forming the basis of the system. As well as describing the concept and performance of the system, its merits and disadvantages are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.