Background and Objective Ruxolitinib is a tyrosine kinase inhibitor targeting the Janus kinase (JAK) and signal transducer and activator of transcription (STAT) pathways. Ruxolitinib is used to treat myelofibrosis, polycythemia vera and steroid-refractory graft-versus-host disease in the setting of allogeneic stem-cell transplantation. This review describes the pharmacokinetics and pharmacodynamics of ruxolitinib. Methods Pubmed, EMBASE, Cochrane Library and web of Science were searched from the time of database inception to march 15, 2021 and was repeated on November 16, 2021. Articles not written in English, animal or in vitro studies, letters to the editor, case reports, where ruxolitinib was not used for hematological diseases or not available as full text were excluded. Results Ruxolitinib is well absorbed, has 95% bio-availability, and is bound to albumin for 97%. Ruxolitinib pharmacokinetics can be described with a two-compartment model and linear elimination. Volume of distribution differs between men and women, likely related to bodyweight differences. Metabolism is mainly hepatic via CYP3A4 and can be altered by CYP3A4 inducers and inhibitors. The major metabolites of ruxolitinib are pharmacologically active. The main route of elimination of ruxolitinib metabolites is renal. Liver and renal dysfunction affect some of the pharmacokinetic variables and require dose reductions. Model-informed precision dosing might be a way to further optimize and individualize ruxolitinib treatment, but is not yet advised for routine care due to lack of information on target concentrations. Conclusion Further research is needed to explain the interindividual variability of the ruxolitinib pharmacokinetic variables and to optimize individual treatment. Supplementary Information The online version contains supplementary material available at 10.1007/s40262-023-01225-7.
There is great need for the identification of new, potentially modifiable risk factors for the poor health-related quality of life (HRQoL) and of the excess risk of mortality in dialysis-dependent chronic kidney disease patients. Creatine is an essential contributor to cellular energy homeostasis, yet, on a daily basis, 1.6–1.7% of the total creatine pool is non-enzymatically degraded to creatinine and subsequently lost via urinary excretion, thereby necessitating a continuous supply of new creatine in order to remain in steady-state. Because of an insufficient ability to synthesize creatine, unopposed losses to the dialysis fluid, and insufficient intake due to dietary recommendations that are increasingly steered towards more plant-based diets, hemodialysis patients are prone to creatine deficiency, and may benefit from creatine supplementation. To avoid problems with compliance and fluid balance, and, furthermore, to prevent intradialytic losses of creatine to the dialysate, we aim to investigate the potential of intradialytic creatine supplementation in improving outcomes. Given the known physiological effects of creatine, intradialytic creatine supplementation may help to maintain creatine homeostasis among dialysis-dependent chronic kidney disease patients, and consequently improve muscle status, nutritional status, neurocognitive status, HRQoL. Additionally, we describe the rationale and design for a block-randomized, double-blind, placebo-controlled pilot study. The aim of the pilot study is to explore the creatine uptake in the circulation and tissues following different creatine supplementation dosages.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.