Defective ecotropic and amphotropic retroviral vectors containing the cDNA for human hypoxanthine phosphoribosyltransferase (HPRT) were developed for efficient gene transfer and high-level cellular expression of HPRT. Helper cell clones which produced a high viral titer were generated by a simplified method which minimizes cell culture. We used the pZIP-NeoSV(X) vector containing a human hprt cDNA. Viral titers (1 x 103 to 5 x 104/ml) of defective SVX HPRT B, a vector containing both the hprt and neo genes, were increased 3-to 10-fold by cocultivation of the ecotropic *2 and amphotropic PA-12 helper cells. Higher viral titers (8 x 105 to 7.5 x 106) were obtained when nonproducer NIH 3T3 cells or I2 cells carrying a single copy of SVX HPRT B were either transfected or infected by Moloney leukemia virus. The SVX HPRT B defective virus partially corrected the HPRT deficiency (4 to 56% of normal) of cultured rodent and human Lesch-Nyhan cells. However, instability of HPRT expression was detected in several infected clones. In these unstable variants, both retention and loss of the SVX HPRT B sequences were observed. In the former category, cells which became HPRT-(6-thioguanine resistant [6TGF]) also became G418s, indicative of a cis-acting down regulation of expression. Both hypoxanthine-aminopterin-thymidine resistance (HATr) and G418' could be regained by counterselection in hypoxanthine-aminopterin-thymidine. In vitro mouse bone marrow experiments indicated low-level expression of the neo gene in in vitro CFU assays. Individual CFU were isolated and pooled, and the human hprt gene was shown to be expressed. These studies demonstrated the applicability of vectors like SVX HPRT B for high-titer production of defective retroviruses required for hematopoietic gene transfer and expression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.