New K-Ca and Rb-Sr isotopic analyses have been performed on alkali-rich igneous rock fragments in the Yamato (Y)-74442 and Bhola LL-chondritic breccias to better understand the extent and timing of alkali enrichments in the early solar system. The Y-74442 fragments yield a K-Ca age of 4.41 ± 0.28 Ga for λ(40 K) = 0.5543 Ga-1 with an initial 40 Ca/ 44 Ca ratio of 47.1618 ± 0.0032. Studying the same fragments with the Rb-Sr isotope system yields an age of 4.420 ± 0.031 Ga for λ(87 Rb) = 0.01402 Ga-1 with an initial ratio of 87 Sr/ 86 Sr = 0.7203 ± 0.0044. An igneous rock fragment contained in Bhola shows a similar alkali fractionation pattern to those of Y-74442 fragments but does not plot on the K-Ca or Rb-Sr isochron of the Y-74442 fragments. Calcium isotopic compositions of whole-rock samples of angrite and chondrites are primordial, indistinguishable from mantle-derived terrestrial rocks, and here considered to represent the initial composition of bulk silicate Earth. The initial ε 40 Ca value determined for the source of the alkali clasts in Y-74442 that is ~0.5 ε-units higher than the solar system value implies an early alkali enrichment. Multi-isotopic studies on these alkali-rich fragments reveal that the source material of Y-74442 fragments had elemental ratios of K/Ca = 0.43 ± 0.18, Rb/Sr = 3.45 ± 0.66 and K/Rb ~170, that may have formed from mixtures of an alkali-rich component (possibly an alkali-enriched gaseous reservoir produced by fractionation of early nebular condensates) and chondritic components that were flash-heated during an impact event on the LLchondrite parent body ~4.42 Ga ago. Further enrichments of potassium and rubidium relative to calcium and strontium as well as a mutual alkali-fractionation (K/Rb ~50 and 3/25 differentiation of this melt. Alkali fragments in Bhola might have undergone similar solidvapor fractionation processes to those of Y-74442 fragments but appear to have formed via a distinct impact melting event.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.