Metal plasma formed by a vacuum arc plasma source can be passed through a toroidal-section magnetic duct for the filtering of macroparticles from the plasma stream. In order to maximize the plasma transport efficiency of the filter the duct wall should be biased, typically to a positive voltage of about 10-20 V. In some cases it is not convenient to bias the duct, for example if the duct wall is part of the grounded vacuum system. However, a positively biased electrode inserted into the duct along its outer major circumference can serve a similar purpose. In this article, we describe our results confirming and quantifying this effect. We also show the parametric dependence of the duct transport on the experimental variables.
We report here experimental evidence of electron oscillation within the toroidal-section magnetic duct of a filtered vacuum arc plasma source. Our results clearly demonstrate that electrons can oscillate inside the duct under the combined effects of the electric and magnetic fields. In another experiment, we observe that, under the influence of the electron motion, the trajectories of the plasma ions are more or less unchanged except in the intensity when the Bilek plate is biased. Finally, our time-of-flight experiments show that the effects due to collisional scattering between plasma ions and oscillating electrons are masked by those associated with the metal plasma flow through the duct, and collisional scattering does not give rise to an increase of the mean charge state of the plasma ions. We conclude that the application of a bias voltage to the duct not only perturbs the ions but also influences the plasma electrons. Our results demonstrate that electrons at the central axis are one of the major reasons leading to improved plasma transport through the duct.
A three-dimensional numerical model has been developed to simulate the motion of electrons inside the duct of a vacuum arc metal source. It is found that electrons will travel back and forth along the center axis inside the duct tube. This phenomenon of electron oscillation can be explained by the combined effects of the electric and magnetic fields. The electron oscillation will increase the charge state of the positive ions and the ions will gain more energy. Due to the influence of electron oscillation, the plasma throughput of the duct will be different from that of a duct under the influence of only the magnetic field. This finding should be taken into account when designing metal arc sources and optimizing their performance.
High energy implantation of metal ions can be carried out using conventional ion implantation with a mass-selected ion beam in scanned-spot mode by employing a broad-beam approach such as with a vacuum arc ion source, or by utilizing plasma immersion ion implantation with a metal plasma. For many high dose applications, the use of plasma immersion techniques offers a high-rate process, but the formation of a surface film along with the subsurface implanted layer is sometimes a severe or even fatal detriment. We describe here an operating mode of the metal plasma immersion approach by which pure implantation can be obtained. We have demonstrated the technique by carrying out Ti and Ta implantations at energies of about 80 and 120 keV for Ti and Ta, respectively, and doses on the order of 1ϫ10 17 ions/cm 2. Our experiments show that virtually pure implantation without simultaneous surface deposition can be accomplished. Using proper synchronization of the metal arc and sample voltage pulse, the applied dose that deposits as a film versus the part that is energetically implanted ͑the deposition-to-implantation ratio͒ can be precisely controlled.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.