Hepatitis B virus X protein (HBx) plays critical roles in the pathogenesis of hepatocellular carcinoma (HCC). Here, we were interested in knowing whether the oncogene Lin28A and its homolog Lin28B are involved in the hepatocarcinogenesis mediated by HBx. We showed that the expression levels of Lin28A and Lin28B were increased in clinical HCC tissues, HepG2.2.15 cell line and liver tissues of p21-HBx transgenic mice. Interestingly, the expression levels of HBx were positively associated with those of Lin28A/Lin28B in clinical HCC tissues. Moreover, the overexpression of HBx resulted in the upregulation of Lin28A/Lin28B in hepatoma HepG2/H7402 cell lines by transient transfection, suggesting that HBx was able to upregulate Lin28A and Lin28B. Then, we examined the mechanism by which HBx upregulated Lin28A and Lin28B. We identified that the promoter region of Lin28A regulated by HBx was located at nt -235/-66 that contained Sp-1 binding element. Co-immunoprecipitation showed that HBx was able to interact with Sp-1 in HepG2-X cells. Moreover, chromatin immunoprecipitation (ChIP) demonstrated that HBx could bind to the promoter of Lin28A, which failed to work when Sp-1 was silenced. Electrophoretic mobility shift assay (EMSA) further identified that HBx was able to interact with Sp-1 element in Lin28A promoter via transcription factor Sp-1. In addition, we found that c-Myc was involved in the activation of Lin28B mediated by HBx. In function, Lin28A/Lin28B played important roles in HBx-enhanced proliferation of hepatoma cells in vitro and in vivo. In conclusion, HBx activates Lin28A/Lin28B through Sp-1/c-Myc in hepatoma cells. Lin28A/Lin28B serves as key driver genes in HBx-induced hepatocarcinogenesis.
Due to its high nitrogen content, melamine was deliberately added to raw milk for increasing the apparent protein content. Previous studies showed that melamine-induced apoptosis and oxidative damage on PC12 cells and rats' hippocampus. Several evidences suggested that vitamin antioxidant reduced oxidative stress and improved organic function. Whether treatments with antioxidant vitamins C or E, otherwise combination of them can attenuate oxidative stress after melamine administration remains to be elucidated. In this study, the reversible effects of vitamin antioxidants was investigated on melamine-induced neurotoxicity in cultured PC12 cells, an in vitro model of neuronal cells. When comparing vitamin C and E, the combination of both statistically increased PC12 cells viability. The results further showed that vitamin complex has effectively reduced the formation of reaction oxygen species, decreased the level of malondialdehyde, and elevated the activities of antioxidative enzymes. Hoechst 33342 staining and flow cytometric analysis of apoptosis showed that vitamin combination treatment effectively prevented PC12 cells from this melamine-induced apoptosis. It revealed the apoptotic nuclear features of the melamine-induced cell death. Additionally, a combination treatment of vitamins effectively inhibited apoptosis via blocking the increased activation of caspase-3. In summary, the vitamin E and C combination treatment could rescue PC12 cells from the injury induced by melamine through the downregulation of oxidative stress and prevention of melamine-induced apoptosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.