Five high-molecular-weight microtubule-associated proteins (MAPs) were identified in brain tissue in previous work from this laboratory (Bloom et al., 1984). These proteins were termed MAP 1A, 1B, 1C, 2A, and 2B. The MAP 1's differed from the MAP 2's, and showed little evidence of interrelationship on the basis of immunological and biochemical comparison. We report here that MAP 1A and MAP 1B are, in fact, related at the level of subunit composition. Immunoprecipitation of the individual MAPs showed that both contained low-molecular-weight subunits of Mr 30,000 and Mr 19,000 (light chains 1 and 3). An additional subunit, light chain 2 (Mr 28,000), was primarily found in preparations of MAP 1A. The light chains co-sedimented with microtubules after chymotryptic digestion of the MAPs. This suggested an association of the light chains with the microtubule binding domains of the MAPs, which are identified here as distinct fragments of Mr 60,000 for MAP 1A and 120,000 for MAP 1B. A panel of monoclonal anti- MAP 1A and anti-MAP 1B antibodies, including one that reacts with a common phosphorylated epitope, was used to examine the distribution of these proteins in the developing rat brain and spinal cord. MAP 1B was found to be abundant in the newborn brain and to decrease with development, in contrast to MAP 1A which increased with development. By immunohistochemistry MAP 1B was found to be highly concentrated in developing axonal processes in the cerebellar molecular layer, the corticospinal tract, the mossy fibers in the hippocampus, and the olfactory nerve. Of particular interest, the mossy fiber and olfactory nerve staining persisted in the adult, indicating continued outgrowth of the mossy fibers as well as olfactory nerve axons. MAP 1A staining was, in contrast, weak or absent in developing axonal fibers but moderate in mature axons and intense in developing and mature dendritic processes. Our results indicate that MAP 1A and MAP 1B are structurally related components of the neuronal cytoskeleton with complementary patterns of expression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.