The recycling of plastic waste is important both in the conservation of resources and the environment. A plastic waste (polyethylene(PE)lpolypropylene(PP)lpolystyrene(PS)l polyvinyl chloride(PVC)) was pyrolyzed over a series of post-use fluid catalytic cracking (FCC) catalysts using a fluidizing reaction system similar to the FCC process operating isothermally at ambient pressure. Experiments carried out with these catalysts gave good yields of valuable hydrocarbons with differing selectivity in the final products dependent on reaction conditions. A model based on kinetic considerations associated with chemical reactions and catalyst deactivation in the catalytic degradation of plastics has been developed. Greater product selectivity was observed with a hybrid catalyst (SAHAICAT-Rl) of amorphous silica-aluminas (SAHA) and a recycle FCC catalyst with regeneration (CATRl) with more than 68.6 wt. % olefins products. It is demonstrated that the catalytic degradation of postconsumer plastics over these recycled catalysts using fluidizing cracking reactions was shown to be a useful method for the production of potentially valuable hydrocarbons.
The recycling of plastic waste is important both in the conservation of resources and the environmental protection. A plastic waste (PE/PP/PS/PVC) was pyrolyzed over a series of post-use FCC catalysts using a fluidizing reaction system similar to the FCC process operating isothermally at ambient pressure. Experiments carried out with these catalysts gave good yields of valuable hydrocarbons with differing selectivity in the final products dependent on reaction conditions. A model based on kinetic considerations associated with chemical reactions and catalyst deactivation in the catalytic degradation of plastics has been developed. Greater product selectivity was observed with a hybrid catalyst of MCM-41/Cat-R1 with more than 70.5 wt% olefins products. It is demonstrated that the catalytic degradation of post-consumer chloro-commingled plastics over these recycled catalysts coped with the utility of fluidizing cracking system was shown to be a useful method for the production of potentially valuable hydrocarbons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.