In this paper, we propose a method for determining all minimal representations of a face of a polyhedron defined by a system of linear inequalities. Main difficulties for determining prime and minimal representations of a face are that the deletion of one redundant constraint can change the redundancy of other constraints and the number of descriptor index pairs for the face can be huge. To reduce computational efforts in finding all minimal representations of a face, we prove and use properties that deleting strongly redundant constraints does not change the redundancy of other constraints and all minimal representations of a face can be found only in the set of all prime representations of the face corresponding to the maximal descriptor index set for it. The proposed method is based on a top-down search strategy, is easy to implement, and has many computational advantages. Based on minimal representations of a face, a reduction of degeneracy degrees of the face and ideas to improve some known methods for finding all maximal efficient faces in multiple objective linear programming are presented. Numerical examples are given to illustrate the method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.