Annexin A5 (AnxA5) binds to phospholipid bilayers, forming two-dimensional crystals that block the phospholipids from availability for coagulation enzyme reactions. Antiphospholipid (aPL) antibodies cause gaps in the ordered crystallization of AnxA5 which expose phospholipids and thereby accelerate blood coagulation reactions. The aPL antibody-mediated disruption of AnxA5 crystallization has been confirmed on artificial phospholipid bilayers and on cell membranes including endothelial cells, placental trophoblasts and platelets. Recently, we reported that hydroxychloroquine, a synthetic antimalarial drug, can reverse this antibody-mediated process through two mechanisms: (1) by inhibiting the formation of aPL IgG-beta2glycoprotein I complexes; and (2) by promoting the formation of a second layer of AnxA5 crystal 'patches' over areas where the immune complexes had disrupted AnxA5 crystallization. In another translational application, we have developed a mechanistic assay that reports resistance to AnxA5 anticoagulant activity in plasmas of patients with aPL antibodies. AnxA5 resistance may identify a subset of aPL syndrome patients for whom this is a mechanism for pregnancy losses and thrombosis. The elucidation of aPL-mediated mechanisms for thrombosis and pregnancy complications may open new paths towards addressing this disorder with targeted treatments and mechanistic assays.
The phospholipid binding protein, annexin A5 (AnxA5), has potent anticoagulant properties that result from its forming 2-dimensional crystals over phospholipids, blocking the availability of the phospholipids for critical coagulation enzyme reactions. This article reviews the evidence that antiphospholipid antibodies can disrupt this anticoagulant shield and unmask thrombogenic anionic phospholipids, which may thereby contribute to thrombosis in patients with the antiphospholipid syndrome (APS). This mechanism for thrombosis in APS can be monitored with coagulation assays for resistance to anticoagulant activity of AnxA5.
Vascular wall fibrinolytic system proteins are believed to play a pivotal role in atherogenesis. Tissue-type plasminogen activator (t-PA) and urokinase plasminogen activator (u-PA) influence persistence of luminal thrombi and proteolysis of extracellular matrix, respectively. The major physiologic inhibitor of t-PA and u-PA is plasminogen activator inhibitor type 1 (PAI-1). All three of these fibrinolytic system proteins have been detected in vascular endothelial cells, smooth muscle cells, and macrophages by light microscopic immunohistochemistry. This study was undertaken to delineate, by immunoelectron microscopy, the loci of PAI-1 in smooth muscle cells from intact morphologically normal and atherosclerotic human arteries as well as in isolated and cultured smooth muscle cells from arteries. In intact vessels, PAI-1 immunoreactivity was associated with contractile filaments in cells in both normal and atherosclerotic tissues. Lipid-laden smooth muscle cells in atherosclerotic vessels were mainly of the synthetic phenotype and displayed lesser amounts of PAI-1 associated with rough endoplasmic reticulum and contractile filaments. Isolated smooth muscle cells exhibited either a contractile or synthetic phenotype. In the cells with a contractile phenotype, PAI-1 was associated with the contractile elements, whereas in the cells with a synthetic phenotype, the PAI-1 was associated predominantly with elements of the endoplasmic reticulum. Because PAI-1 is associated predominantly with contractile filaments in smooth muscle cells, the net amount of immunodetectable PAI-1 appears to be greater in contractile compared with synthetic phenotype cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.