Background Ileus is common after elective colorectal surgery, and is associated with increased adverse events and prolonged hospital stay. The aim was to assess the role of non‐steroidal anti‐inflammatory drugs (NSAIDs) for reducing ileus after surgery. Methods A prospective multicentre cohort study was delivered by an international, student‐ and trainee‐led collaborative group. Adult patients undergoing elective colorectal resection between January and April 2018 were included. The primary outcome was time to gastrointestinal recovery, measured using a composite measure of bowel function and tolerance to oral intake. The impact of NSAIDs was explored using Cox regression analyses, including the results of a centre‐specific survey of compliance to enhanced recovery principles. Secondary safety outcomes included anastomotic leak rate and acute kidney injury. Results A total of 4164 patients were included, with a median age of 68 (i.q.r. 57–75) years (54·9 per cent men). Some 1153 (27·7 per cent) received NSAIDs on postoperative days 1–3, of whom 1061 (92·0 per cent) received non‐selective cyclo‐oxygenase inhibitors. After adjustment for baseline differences, the mean time to gastrointestinal recovery did not differ significantly between patients who received NSAIDs and those who did not (4·6 versus 4·8 days; hazard ratio 1·04, 95 per cent c.i. 0·96 to 1·12; P = 0·360). There were no significant differences in anastomotic leak rate (5·4 versus 4·6 per cent; P = 0·349) or acute kidney injury (14·3 versus 13·8 per cent; P = 0·666) between the groups. Significantly fewer patients receiving NSAIDs required strong opioid analgesia (35·3 versus 56·7 per cent; P < 0·001). Conclusion NSAIDs did not reduce the time for gastrointestinal recovery after colorectal surgery, but they were safe and associated with reduced postoperative opioid requirement.
We describe a flexible data reduction package for high resolution cross-dispersed echelle data. This open-source package is developed in Python and includes optional GUIs for most of the steps. It does not require any pre-knowledge about the form or position of the echelle-orders. It has been tested on cross-dispersed echelle spectrographs between 13k and 115k resolution (bifurcated fiber-fed spectrogaph ESO-HARPS and single fiber-fed spectrograph TNT-MRES). HiFLEx can be used to determine radial velocities and is designed to use the TERRA package but can also control the radial velocity packages such as CERES and SERVAL to perform the radial velocity analysis. Tests on HARPS data indicates radial velocities results within ±3 m s−1 of the literature pipelines without any fine tuning of extraction parameters.
In a series of papers we investigate the effect of collisions between turbulent molecular clouds on their structure, evolution and star formation activity. In this paper we look into the role of the clouds' initial virial ratios. Three different scenarios were examined: both clouds initially bound, one cloud bound and one unbound, and both clouds initially unbound. Models in which one or both clouds are bound generate filamentary structures aligned along the collision axis and discernible in position-position and position-velocity space. If neither cloud is bound, no filaments result. Unlike in previous simulations of collisions between smooth clouds, owing to the substructure created in the clouds by turbulence before the collisions, dissipation of kinetic energy by the collision is very inefficient and in none of our simulations is sufficient bulk kinetic energy lost to render the clouds bound. Simulations where both clouds are bound created twice as much stellar mass than the bound-unbound model, and both these scenarios produced much more stellar mass than the simulation in which both clouds are unbound. Each simulation was also compared with a control run in which the clouds do not collide. We find the bound-bound collision increases the overall star formation efficiency by a factor of approximately two relative to the control, but that the bound-unbound collision produces a much smaller increase, and the collision has very little effect on the unbound-unbound cloud collision.
Abstarct We use a series of magnetohydrodynamic simulations including both radiative and protostellar outflow feedback to study environmental variation of the initial mass function. The simulations represent a carefully-controlled experiment whereby we keep all dimensionless parameters of the flow constant except for those related to feedback. We show that radiation feedback suppresses the formation of lower mass objects more effectively as the surface density increases, but this only partially compensates for the decreasing Jeans mass in denser environments. Similarly, we find that protostellar outflows are more effective at suppressing the formation of massive stars in higher surface density environments. The combined effect of these two trends is towards an IMF with a lower characteristic mass and a narrower overall mass range in high surface density environments. We discuss the implications for these findings for the interpretation of observational evidence of IMF variation in early type galaxies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.