Summary
Despite being an area of cancer with highest worldwide incidence, oral cancer yet remains to be widely researched. Studies on computer‐aided analysis of pathological slides of oral cancer contribute a lot to the diagnosis and treatment of the disease. Some researches in this direction have been carried out on oral submucous fibrosis. In this work an approach for analysing abnormality based on textural features present in squamous cell carcinoma histological slides have been considered. Histogram and grey‐level co‐occurrence matrix approaches for extraction of textural features from biopsy images with normal and malignant cells are used here. Further, we have used linear support vector machine classifier for automated diagnosis of the oral cancer, which gives 100% accuracy.
Background
Oral squamous cell carcinoma (OSCC) is the most prevalent form of oral cancer. Very few researches have been carried out for the automatic diagnosis of OSCC using artificial intelligence techniques. Though biopsy is the ultimate test for cancer diagnosis, analyzing a biopsy report is a very much challenging task. To develop computer‐assisted software that will diagnose cancerous cells automatically is very important and also a major need of the hour.
Aim
To identify OSCC based on morphological and textural features of hand‐cropped cell nuclei by traditional machine learning methods.
Methods
In this study, a structure for semi‐automated detection and classification of oral cancer from microscopic biopsy images of OSCC, using clinically significant and biologically interpretable morphological and textural features, are examined and proposed. Forty biopsy slides were used for the study from which a total of 452 hand‐cropped cell nuclei has been considered for morphological and textural feature extraction and further analysis. After making a comparative analysis of commonly used methods in the segmentation technique, a combined technique is proposed. Our proposed methodology achieves the best segmentation of the nuclei. Henceforth the features extracted were fed into five classifiers, support vector machine, logistic regression, linear discriminant, k‐nearest neighbors and decision tree classifier. Classifiers were also analyzed by training time. Another contribution of the study is a large indigenous cell level dataset of OSCC biopsy images.
Results
We achieved 99.78% accuracy applying decision tree classifier in classifying OSCC using morphological and textural features.
Conclusion
It is found that both morphological and textural features play a very important role in OSCC diagnosis. It is hoped that this type of framework will help the clinicians/pathologists in OSCC diagnosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.