Following the example of photovoltaics, one approach to large‐scale photocatalytic hydrogen production is the irradiation of a correspondingly large catalyst area. Paper production is a process in which large areas can already be produced based on the main component: cellulose. Herein, the TiO2 photocatalyst modification PC500, which also uses platinum nanoparticles as a cocatalyst, is supported in two different ways using cellulose. On the one hand, the catalyst is fixed to the surface of a commercial filter paper and, on the other hand, a photocatalytic paper is produced. For comparison, the catalyst is immobilized by means of drop coating using Nafion and measured as a suspension. The cellulose‐stabilized films are active and hydrogen production is comparable with the activity obtained from the drop‐coating method. The experiments show that the aggregation behavior of cellulose can be used to produce photocatalytically active films. The preparation is easy and can be applied to different kinds of (photo)catalysts. Although the films are very active, their stability during reaction due to swelling and hydrogen production must be further improved.
Modified cellulose (ModCe) was used in a photodeposition process as a support material for platinum nanoparticles. The supported catalysts were investigated for the transfer hydrogenation of para-nitrophenol (PNP) to para-aminophenol (PAP).
In this contribution, a simple method for the screening of photocatalytic activity of catalyst materials is presented. The method is based on two steps: the immobilization of the photocatalyst and the subsequent testing of their photocatalytic activity, using the gas evolution at the solid-liquid interface. Up to four catalysts can be tested under the same conditions. The observed gas evolution for selected photocatalysts is consistent with trends reported in the literature from conventional photocatalytic reactors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.