Epilepsy is one of the most common diseases of the central nervous system, impacting nearly 50 million people around the world. Heterogeneous in nature, epilepsy presents in children and adults alike. Currently, surgery is one treatment approach that can completely cure epilepsy. However, not all individuals are eligible for surgical procedures or have successful outcomes. In addition to surgical approaches, antiepileptic drugs (AEDs) have also allowed individuals with epilepsy to achieve freedom from seizures. Others have found treatment through nonpharmacologic approaches such as vagus nerve stimulation, or responsive neurostimulation. Difficulty in accessing samples of human brain tissue along with advances in sequencing technology have driven researchers to investigate sampling liquid biopsies in blood, serum, plasma, and cerebrospinal fluid within the context of epilepsy. Liquid biopsies provide minimal or non-invasive sample collection approaches and can be assayed relatively easily across multiple time points, unlike tissue-based sampling. Various efforts have investigated circulating nucleic acids from these samples including microRNAs, cell-free DNA, transfer RNAs, and long non-coding RNAs. Here, we review nucleic acid-based liquid biopsies in epilepsy to improve understanding of etiology, diagnosis, prediction, and therapeutic monitoring.
Schinzel Giedion Syndrome (SGS) is an ultra-rare autosomal dominant Mendelian disease presenting with abnormalities spanning multiple organ systems. The most notable phenotypes involve severe developmental delay, progressive brain atrophy, and drug-resistant seizures. SGS is caused by spontaneous variants in SETBP1, which encodes for the epigenetic hub SETBP1 transcription factor (TF). SETBP1 variants causing classical SGS cluster at the degron, disrupting SETBP1 protein degradation resulting in toxic accumulation, while those located outside cause milder atypical SGS. Due to the multi-system phenotype, we evaluated gene expression and regulatory programs altered in atypical SGS by snRNA-seq of cerebral cortex and kidney of Setbp1S858R heterozygous mice (corresponds to the human likely pathogenic SETBP1S867R variant) compared to matched wild-type mice by constructing cell-type-specific regulatory networks. Setbp1 was differentially expressed in excitatory neurons, but known SETBP1 targets were differentially expressed and regulated in many cell types. Our findings suggest molecular drivers underlying neurodevelopmental phenotypes in classical SGS also drive atypical SGS, persist after birth, and are present in the kidney. Our results indicate the role of SETBP1 as an epigenetic hub leads to cell-type-specific differences in TF activity, gene targeting, and regulatory rewiring. This research provides a framework for investigating cell-type-specific variant impact on gene expression and regulation.
Evolutionary biologists have long focused on the patterns and causes of sexual size dimorphism (SSD). While female-biased SSD is common among ectotherms, a few lineages predominately exhibit male-biased SSD. One example is the clade of desmognathans, a monophyletic group of two genera within the Plethodontinae of the lungless salamander family Plethodontidae. Members of these two genera have a unique pattern of SSD: males mature earlier and at smaller sizes than females but reach greater maximum sizes. We used comparative phylogenetic methods to test whether SSD in these salamanders is the result of sexual selection on males. Spatial evolutionary and ecological vicariance analysis indicated a significant divergence in SSD associated with the phylogenetic origin of the desmognathans. Phylogenetic least-squares regression across the two most speciose genera of the subfamily determined a significant relationship between SSD and adult sex ratio. While male desmognathans are not sexually dimorphic in head size, they have a unique head morphology that causes their heads to grow more rapidly as their body size increases as compared with the heads of other salamanders. This pattern of allometric growth combines with a powerful bite force and enlarged premaxillary teeth to create formidable weaponry that probably is more responsive to sexual selection.
Alzheimer’s disease is the most common neurodegenerative disease and affects persons of all races, ethnic groups, and sexes. The disease is characterized by neuronal loss leading to cognitive decline and memory loss. There is no cure and the effectiveness of existing treatments is limited and depends on the time of diagnosis. The long prodromal period, during which patients’ ability to live a normal life is not affected despite neuronal loss, often leads to a delayed diagnosis because it can be mistaken for normal aging of the brain. In order to make a substantial impact on AD patients, early diagnosis may provide a greater therapeutic window for future therapies to slow AD-associated neurodegeneration. Current gold standards for disease detection include magnetic resonance imaging and positron emission tomography scans, which visualize amyloid β and phosphorylated tau depositions and aggregates. Liquid biopsies, already an active field of research in precision oncology, are hypothesized to provide early disease detection through minimally or non-invasive sample collection techniques. Liquid biopsies in Alzheimer’s disease have been studied in cerebrospinal fluid, blood, ocular, oral, and olfactory fluids. However, most of the focus has been on blood and cerebrospinal fluid due to biomarker specificity and sensitivity attributed to the effects of the blood-brain barrier and inter-laboratory variation during sample collection. Many studies have identified amyloid β and phosphorylated tau levels as putative biomarkers, however, advances in next-generation sequencing-based liquid biopsy methods have led to significant interest in identifying nucleic acids species associated with Alzheimer’s disease from liquid tissues. Differences in cell-free RNAs and DNAs have been described as potential biomarkers for AD and hold the potential to affect disease diagnosis, treatment, and future research avenues.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.