Abstract. Increasingly large datasets acquired by NASA for global climate studies demand larger computation memory and higher CPU speed to mine out useful and revealing information. While boosting the CPU frequency is getting harder, clustering multiple lower performance computers thus becomes increasingly popular. This prompts a trend of parallelizing the existing algorithms and methods by mathematicians and computer scientists. In this paper, we take on the task of parallelizing the Nonnegative Tensor Factorization (NTF) method, with the purposes of distributing large datasets into each cluster node and thus reducing the demand on a single node, blocking and localizing the computation at the maximal degree, and finally minimizing the memory use for storing matrices or tensors by exploiting their structural relationships. Numerical experiments were performed on a NASA global sea surface temperature dataset and result factors were analyzed and discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.