Basic fibroblast growth factor (b-FGF) may have a role in tissue-engineered chondrogenesis. However, when applied in solution, b-FGF rapidly diffuses from the implant site. In another approach for tissue engineering, poly-lactide-based copolymers have shown promise as scaffolds for chondrocytes used to tissue engineer auricular cartilage in the shape of an ear. This study evaluated the effectiveness of b-FGF impregnated in gelatin microspheres to achieve slow growth factor release for augmenting the in vivo chondrogenic response. Whereas 125I-labeled b-FGF injected in solution showed rapid in vivo clearance from the injection site (only 3% residual after 24 h), when incorporated into gelatin microspheres, 44% and 18% of the b-FGF remained at 3 and 14 days, respectively. Canine chondrocytes were isolated and grown in vitro onto ear-shaped poly-lactide/caprolactone copolymers for 1 week, then implanted into the dorsal subcutaneous tissue of nude mice; implants contained b-FGF either in free solution or in gelatin microspheres. A third group underwent preinjection of b-FGF in gelatin microspheres 4 days before chondrocyte-copolymer implantation. The implants with b-FGF-incorporated microspheres showed the greatest chondrogenic characteristics at 5 and 10 weeks postoperatively: good shape and biomechanical trait retention, strong (histologic) metachromasia, rich vascularization of surrounding tissues, and increased gene expression for type II collagen (cartilage marker) and factor VIII-related antigen (vascular marker). In the case of implant site preadministration with b-FGF-impregnated microspheres, the implant architecture was not maintained as well, and reduced vascularization and metachromasia was also apparent. In conclusion, these findings indicate that a sustained release of b-FGF augments neovascularization and chondrogenesis in a tissue-engineered cartilage construct.
We developed a technique to form a bioabsorbable synthetic polymer (polyglycolic acid, PGA) combined with a natural polymer (fibrin) to serve as a scaffold to help retain seeded cells and improve the seeding efficiency of chondrocytes in an implantable construct. This approach was evaluated in a canine autologous implant model of bioengineered cartilage. The implantation site (subcutaneous or intrafascial) and the use of basic fibroblast growth factor (b-FGF) were also evaluated with this system. The intrafascial implantation site yielded optimal results, especially when used in conjunction with fibrin and a b-FGF sustained-release system incorporated into the complex. A thicker, more sustained cartilagenous layer was formed, with a more vascularized outer fibrous supporting tissue layer. This combined approach of implant environment selection, natural polymer for cell retention, and growth factor supplementation offers a more optimized method for generating bioengineered auricular cartilage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.