The mechanics of the microenvironment continuously modulates cell functions like growth, survival, apoptosis, differentiation, and morphogenesis via cytoskeletal remodeling and actomyosin contractility 1 – 3 . Although all these processes consume energy 4 , 5 , it is unknown if and how cells adapt their metabolic activity to variable mechanical cues. Here, we report that transfer of human bronchial epithelial cells (HBECs) from stiff to soft substrates causes downregulation of glycolysis via proteasomal degradation of the rate-limiting metabolic enzyme phosphofructokinase (PFK). PFK degradation is triggered by stress fiber disassembly, which releases the PFK-targeting E3 ubiquitin ligase tripartite motif (TRIM)-containing protein 21 (TRIM21). Transformed non-small cell lung cancer cells (NSCLCs), which maintain high glycolytic rates regardless of changing environmental mechanics, retain PFK expression by downregulating TRIM21, and by sequestering residual TRIM21 on a stress fiber population that is insensitive to substrate stiffness. In sum, our data unveil a mechanism by which glycolysis responds to architectural features of the actomyosin cytoskeleton, thus coupling cell metabolism to the mechanical properties of the surrounding tissue. These processes enable normal cells to attune energy production in variable microenvironments, while the resistance of the cytoskeleton to respond to mechanical cues allows high glycolytic rates to persist in cancer cells despite constant alterations of the tumor tissue.
Clathrin lattices at the plasma membrane coat both invaginated and flat regions forming clathrin-coated pits and clathrin plaques, respectively. The function and regulation of clathrin-coated pits in endocytosis are well understood but clathrin plaques remain enigmatic nanodomains. Here we use super-resolution microscopy, molecular genetics and cell biology to show that clathrin plaques contain the machinery for clathrin-mediated endocytosis and cell adhesion, and associate with both clathrin-coated pits and filamentous actin. We also find that actin polymerization promoted by N-WASP through the Arp2/3 complex is crucial for the regulation of plaques but not pits. Clathrin plaques oppose cell migration and undergo actin- and N-WASP-dependent disassembly upon activation of LPA receptor 1, but not EGF receptor. Most importantly, plaque disassembly correlates with the endocytosis of LPA receptor 1 and down-modulation of AKT activity. Thus, clathrin plaques serve as dynamic actin-controlled hubs for clathrin-mediated endocytosis and signalling that exhibit receptor specificity.
Rapid developments in live-cell 3D microscopy enable imaging of cell morphology and signaling with unprecedented detail. However, tools to systematically measure and visualize the intricate relationships between intracellular signaling, cytoskeletal organization, and downstream cell morphological outputs do not exist. Here we introduce u-shape3D, a computer graphics and machine-learning pipeline to probe molecular mechanisms underlying 3D cell morphogenesis and to test the intriguing possibility that morphogenesis itself affects intracellular signaling. We demonstrate a generic morphological motif detector that automatically finds lamellipodia, filopodia, blebs, and other motifs. Combining motif detection with molecular localization, we measure the differential association of PIP 2 and Kras V12 with blebs. Both signals associate with bleb edges, as expected for membrane-localized proteins, but only PIP 2 is enhanced on blebs. This indicates that sub-cellular signaling processes are differentially modulated by local morphological motifs. Overall, our computational workflow enables the objective, 3D analysis of the coupling of cell shape and signaling. Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:
Protrusion of lamellipodia and ruffles requires polymerization of branched actin filaments by Arp2/3 complex. Although regulation of Arp2/3-complex activity has been extensively investigated, the mechanism of initiation of lamellipodia and ruffles remains poorly understood. Here we show that mDia1 acts in concert with the Arp2/3 complex to promote initiation of lamellipodia and ruffles. We find that mDia1 is an EGF-regulated actin nucleator involved in membrane ruffling using a combination of knockdown and rescue experiments. At the molecular level, mDia1 polymerizes linear actin filaments activating the Arp2/3 complex and localizes within nascent and mature membrane ruffles. We employ functional complementation experiments and optogenetics to show that mDia1 cooperates with the Arp2/3 complex in initiating ruffles. Finally, we show that genetic and pharmacological interference with this cooperation hampers ruffling and cell migration. Thus, we propose that the lamellipodium/ruffle-initiating machinery consists of two actin nucleators that act sequentially to regulate membrane protrusion and cell migration.
Formin proteins are key regulators of the cytoskeleton involved in developmental and homeostatic programs, and human disease. For these reasons, small molecules interfering with Formins’ activity have gained increasing attention. Among them, small molecule inhibitor of Formin Homology 2 domains (SMIFH2) is often used as a pharmacological Formin blocker. Although SMIFH2 inhibits actin polymerization by Formins and affects the actin cytoskeleton, its cellular mechanism of action and target specificity remain unclear.Here we show that SMIFH2 induces remodelling of actin filaments, microtubules and the Golgi complex as a result of its effects on Formins and p53.We found that SMIFH2 triggers alternated depolymerization-repolymerization cycles of actin and tubulin, increases cell migration, causes scattering of the Golgi complex, and also cytotoxicity at high dose. Moreover, SMIFH2 reduces expression and activity of p53 through a post-transcriptional, proteasome-independent mechanism that influences remodelling of the cytoskeleton.As the action of SMIFH2 may go beyond Formin inhibition, only short-term and low-dose SMIFH2 treatments minimize confounding effects induced by loss of p53 and cytotoxicity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.