Defective function of dendritic cells (DC) in cancer has been recently described and may represent one of the mechanisms of tumor evasion from immune system control. We have previously shown in vitro that vascular endothelial growth factor (VEGF), produced by almost all tumors, is one of the tumor-derived factors responsible for the defective function of these cells. In this study, we investigated whether in vivo infusion of recombinant VEGF could reproduce the observed DC dysfunction. Continuous VEGF infusion, at rates as low as 50 ng/h (resulting in serum VEGF concentrations of 120 to 160 pg/mL), resulted in a dramatic inhibition of dendritic cell development, associated with an increase in the production of B cells and immature Gr-1+ myeloid cells. Infusion of VEGF was associated with inhibition of the activity of the transcription factor NF-κB in bone marrow progenitor cells. Experiments in vitro showed that VEGF itself, and not factors released by VEGF-activated endothelial cells, affected polypotent stem cells resulting in the observed abnormal hematopoiesis. These data suggest that VEGF, at pathologically relevant concentrations in vivo, may exert effects on pluripotent stem cells that result in blocked DC development as well as affect many other hematopoietic lineages.
Ehlers-Danlos syndrome (EDS) is a heterogeneous connective tissue disorder involving skin and joint laxity and tissue fragility. A new type of EDS, similar to kyphoscoliosis type but without lysyl hydroxylase deficiency, has been investigated. We have identified a homozygous CHST14 (carbohydrate sulfotransferase 14) mutation in the two familial cases and compound heterozygous mutations in four sporadic cases. CHST14 encodes dermatan 4-O-sulfotransferase 1 (D4ST1), which transfers active sulfate from 3'-phosphoadenosine 5'-phosphosulfate to position 4 of the N-acetyl-D-galactosamine (GalNAc) residues of dermatan sulfate (DS). Transfection experiments of mutants and enzyme assays using fibroblast lysates of patients showed the loss of D4ST1 activity. CHST14 mutations altered the glycosaminoglycan (GAG) components in patients' fibroblasts. Interestingly, DS of decorin proteoglycan, a key regulator of collagen fibril assembly, was completely lost and replaced by chondroitin sulfate (CS) in the patients' fibroblasts, leading to decreased flexibility of GAG chains. The loss of the decorin DS proteoglycan due to CHST14 mutations may preclude proper collagen bundle formation or maintenance of collagen bundles while the sizes and shapes of collagen fibrils are unchanged as observed in the patients' dermal tissues. These findings indicate the important role of decorin DS in the extracellular matrix and a novel pathomechanism in EDS.
We previously described two unrelated patients showing characteristic facial and skeletal features, overlapping with the kyphoscoliosis type Ehlers-Danlos syndrome (EDS) but without lysyl hydroxylase deficiency [Kosho et al. (2005) Am J Med Genet Part A 138A:282-287]. After observations of them over time and encounter with four additional unrelated patients, we have concluded that they represent a new clinically recognizable type of EDS with distinct craniofacial characteristics, multiple congenital contractures, progressive joint and skin laxity, and multisystem fragility-related manifestations. The patients exhibited strikingly similar features according to their age: craniofacial, large fontanelle, hypertelorism, short and downslanting palpebral fissures, blue sclerae, short nose with hypoplastic columella, low-set and rotated ears, high palate, long philtrum, thin vermilion of the upper lip, small mouth, and micro-retrognathia in infancy; slender and asymmetric face with protruding jaw from adolescence; skeletal, congenital contractures of fingers, wrists, and hips, and talipes equinovarus with anomalous insertions of flexor muscles; progressive joint laxity with recurrent dislocations; slender and/or cylindrical fingers and progressive talipes valgus and cavum or planus, with diaphyseal narrowing of phalanges, metacarpals, and metatarsals; pectus deformities; scoliosis or kyphoscoliosis with decreased physiological curvatures of thoracic spines and tall vertebrae; cutaneous, progressive hyperextensibility, bruisability, and fragility with atrophic scars; fine palmar creases in childhood to acrogeria-like prominent wrinkles in adulthood, recurrent subcutaneous infections with fistula formation; cardiovascular, cardiac valve abnormalities, recurrent large subcutaneous hematomas from childhood; gastrointestinal, constipation, diverticula perforation; respiratory, (hemo)pneumothorax; and ophthalmological, strabismus, glaucoma, refractive errors.
Defective function of dendritic cells (DC) in cancer has been recently described and may represent one of the mechanisms of tumor evasion from immune system control. We have previously shown in vitro that vascular endothelial growth factor (VEGF), produced by almost all tumors, is one of the tumor-derived factors responsible for the defective function of these cells. In this study, we investigated whether in vivo infusion of recombinant VEGF could reproduce the observed DC dysfunction. Continuous VEGF infusion, at rates as low as 50 ng/h (resulting in serum VEGF concentrations of 120 to 160 pg/mL), resulted in a dramatic inhibition of dendritic cell development, associated with an increase in the production of B cells and immature Gr-1+ myeloid cells. Infusion of VEGF was associated with inhibition of the activity of the transcription factor NF-κB in bone marrow progenitor cells. Experiments in vitro showed that VEGF itself, and not factors released by VEGF-activated endothelial cells, affected polypotent stem cells resulting in the observed abnormal hematopoiesis. These data suggest that VEGF, at pathologically relevant concentrations in vivo, may exert effects on pluripotent stem cells that result in blocked DC development as well as affect many other hematopoietic lineages.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.