DNA topoisomerases have been shown to be important therapeutic targets in cancer chemotherapy. We found that KT6006 and KT6528, synthetic antitumor derivatives of indolocarbazole antibiotic K252a, were potent inducers of a cleavable complex with topoisomerase I. In DNA cleavage assay using purified calf thymus DNA topoisomerase I and supercoiled pBR322 DNA, KT6006 induced topoisomerase I mediated DNA cleavage in a dose-dependent manner at drug concentrations up to 50 microM, while DNA cleavage induced by KT6528 was saturated at 5 microM. The maximal amount of nicked DNA produced by KT6006 was more than 50% of substrate DNA, which was comparable to that of camptothecin. Heat treatment (65 degrees C) of the reaction mixture containing these compounds and topoisomerase I resulted in a substantial reduction in DNA cleavage, suggesting that topoisomerase I mediated DNA cleavage induced by KT6006 and KT6528 is through the mechanism of stabilizing the reversible enzyme-DNA "cleavable complex". Both KT6006 and KT6528 did not induce topoisomerase II mediated DNA cleavage in vitro. KT6006 and KT6528 were found to induce nearly identical topoisomerase I mediated DNA cleavage patterns, which was distinctly different from that with camptothecin. In contrast to the similarity between KT6006 and KT6528 in their structures and the nature of their cleavable complex with topoisomerase I, these drugs have different properties with respect to their interaction with DNA: KT6006 is a very weak intercalator whereas KT6528 is a strong intercalator with potentials comparable to that of adriamycin. These results indicate that KT6006 and KT6528 represent a new distinct class of mammalian DNA topoisomerase I active antitumor drugs.
The signal transducer and activator of transcription 3 (STAT3) is considered to be an attractive therapeutic target for oncology drug development. We identified a N-[2-(1,3,4-oxadiazolyl)]-4-quinolinecarboxamide derivative, STX-0119, as a novel STAT3 dimerization inhibitor by a virtual screen using a customized version of the DOCK4 program with the crystal structure of STAT3. In addition, we used in vitro cell-based assays such as the luciferase reporter gene assay and the fluorescence resonance energy transfer-based STAT3 dimerization assay. STX-0119 selectively abrogated the DNA binding activity of STAT3 and suppressed the expression of STAT3-regulated oncoproteins such as c-myc and survivin in cancer cells. In contrast, a truncated inactive analogue, STX-0872, did not exhibit those activities. Oral administration of STX-0119 effectively abrogated the growth of human lymphoma cells in a SCC-3 subcutaneous xenograft model without visible toxicity. Structure-activity relationships of STX-0119 derivatives were investigated using the docking model of the STAT3-SH2 domain/STX-0119.
Signal transducer and activator of transcription (STAT) 3, a member of a family of DNA-binding molecules, is a potential target in the treatment of cancer. The highly phosphorylated STAT3 in cancer cells contributes to numerous physiological and oncogenic signaling pathways. Furthermore, a significant association between STAT3 signaling and glioblastoma multiforme stem-like cell (GBM-SC) development and maintenance has been demonstrated in recent studies. Previously, we reported a novel small molecule inhibitor of STAT3 dimerization, STX-0119, as a cancer therapeutic. In the present study, we focused on cancer stem-like cells derived from recurrent GBM patients and investigated the efficacy of STX-0119. Three GBM stem cell lines showed many stem cell markers such as CD133, EGFR, Nanog, Olig2, nestin and Yamanaka factors (c-myc, KLF4, Oct3/4 and SOX2) compared with parental cell lines. These cell lines also formed tumors in vivo and had similar histological to surgically resected tumors. STAT3 phosphorylation was activated more in the GBM-SC lines than serum-derived GB cell lines. The growth inhibitory effect of STX-0119 on GBM-SCs was moderate (IC50 15-44 µM) and stronger compared to that of WP1066 in two cell lines. On the other hand, the effect of temozolomide was weak in all the cell lines (IC50 53-226 µM). Notably, STX-0119 demonstrated strong inhibition of the expression of STAT3 target genes (c-myc, survivin, cyclin D1, HIF-1α and VEGF) and stem cell-associated genes (CD44, Nanog, nestin and CD133) as well as the induction of apoptosis in one stem-like cell line. Interestingly, VEGFR2 mRNA was also remarkably inhibited by STX-0119. In a model using transplantable stem-like cell lines in vivo GB-SCC010 and 026, STX-0119 inhibited the growth of GBM-SCs at 80 mg/kg. STX-0119, an inhibitor of STAT3, may serve as a novel therapeutic compound against GBM-SCs even in temozolomide-resistant GBM patients and has the potential for GBM-SC-specific therapeutics in combination with temozolomide plus radiation therapy.
These results suggest that NOG-dKO mice might serve as a good humanized immunotherapy model to evaluate the efficacy of anti-PD-1 antibody prior to the clinical treatment. Clin Cancer Res; 23(1); 149-58. ©2016 AACR.
BackgroundHigh-grade gliomas including glioblastoma multiforme (GBM) are among the most malignant and aggressive of tumors, and have a very poor prognosis despite a temozolomide-based intensive treatment. Therefore, a novel therapeutic approach to controlling recurrence is needed. In the present study, we investigated the effect of activated dendritic cell (DC) (α-type-1 polarized DC)-based immunotherapy on high-grade glioma patients with the HLA-A2 or A24 genotype.MethodsNine patients with recurrent high-grade gliomas including 7 with GBMs who fulfilled eligibility criteria were enrolled into a phase I study of monocyte-derived DC-based immunotherapy. HLA-genotyping revealed 1 case of HLA-A*0201 and 8 cases of A*2402. Enriched monocytes obtained using OptiPrepTM from leukapheresis products on day1, were incubated with GM-CSF and IL-4 in a closed serum-free system, and activated on day6 with TNF-α, IL-1β, IFN-α, IFN-γ, and poly I/C. After pulsing with a cocktail of 5 synthetic peptides (WT-1, HER2, MAGE-A3, and MAGE-A1 or gp100) restricted to HLA-A2 or A24 and KLH, cells were cryopreserved until used. Thawed DCs were injected intradermally in the posterior neck at a dose per cohort of 1.0, 2.0 and 5.0× 107/body.ResultsThe frequency of CD14+ monocytes increased to 44.6% from 11.9% after gradient centrifugation. After a 7-day-incubation with cytokines, the mean percentage of DCs rated as lin-HLA-DR+ in patients was 56.2 ± 19.1%. Most DCs expressed high levels of maturation markers, co-stimulatory molecules and type-1 phenotype (CD11c+HLA-DR+) with a DC1/2 ratio of 35.6. The amount of IL-12 produced from activated DCs was 1025 ± 443 pg/ml per 105 cells. All 76 DC injections were well tolerated except for transient liver dysfunction with grade II. Six patients showed positive immunological responses to peptides in an ELISPOT assay, and positive skin tests to peptide-pulsed DC and KLH were recognized in 4 cases. The clinical response to DC injections was as follows :1 SD and 8 PD. Interestingly, the SD patient, given 24 DC injections, showed a long-term recurrence-free and immunological positive response period.ConclusionsThese results indicate peptide cocktail-treated activated α-type-1 DC-based immunotherapy to be a potential therapeutic tool against recurrent high-grade glioma with mainly HLA-A*2402.Trial registrationCurrent non-randomized investigational trial UMIN-CTR UMIN ID: 000000914.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.