Extracellular ATP released via pannexin-1 channels, in response to the activation of mechanosensitive-TRP channels during odontoblast mechanical stimulation, mediates intercellular communication among odontoblasts in dental pulp slice preparation dissected from rat incisor. Recently, odontoblast cell lines, such as mouse odontoblast lineage cells, have been widely used to investigate physiological/pathological cellular functions. To clarify whether the odontoblast cell lines also communicate with each other by diffusible chemical substance(s), we investigated the chemical intercellular communication among cells from mouse odontoblast cell lines following mechanical stimulation. A single cell was stimulated using a glass pipette filled with standard extracellular solution. We measured intracellular free Ca2+ concentration ([Ca2+]i) by fura-2 in stimulated cells, as well as in cells located nearby. Direct mechanical stimulation to a single odontoblast increased [Ca2+]i, which showed sensitivity to capsazepine. In addition, we observed increases in [Ca2+]i not only in the mechanically stimulated odontoblast, but also in nearby odontoblasts. We could observe mechanical stimulation-induced increase in [Ca2+]i in a stimulated human embryo kidney (HEK) 293 cell, but not in nearby HEK293 cells. The increase in [Ca2+]i in nearby odontoblasts, but not in the stimulated odontoblast, was inhibited by adenosine triphosphate (ATP) release channel (pannexin-1) inhibitor in a concentration- and spatial-dependent manner. Moreover, in the presence of phospholipase C (PLC) inhibitor, the increase in [Ca2+]i in nearby odontoblasts, following mechanical stimulation of a single odontoblast, was abolished. We could record some inward currents evoked from odontoblasts near the stimulated odontoblast, but the currents were observed in only 4.8% of the recorded odontoblasts. The results of this study showed that ATP is released via pannexin-1, from a mechanically stimulated odontoblast, which transmits a signal to nearby odontoblasts by predominant activation of PLC-coupled nucleotide receptors.
Merkel cells (MCs), which form part of the MC-neurite complex, making contact with sensory afferents to drive mechanosensory transduction mechanisms, express transient receptor potential (TRP) cation channel subfamily vanilloid (V) members 1, 2, and 4, as well as ankyrin subfamily member 1. While these proteins are involved in sensing plasma membrane stretch, less is known about the functional properties of TRPV subfamily member 3 (TRPV3) during membrane stretch in MCs. The aim of this study was to determine whether TRPV3 channels were involved in mechanosensory activity by measuring intracellular free Ca(2+) concentrations ([Ca(2+)]i) in MCs isolated from hamster buccal mucosa. Application of a hypotonic extracellular solution to quinacrine-positive MCs elicited a transient increase in [Ca(2+)]i. When TRPV3 channel antagonist 2,2-diphenyltetrahydrofuran was added to the hypotonic extracellular solution, however, no effect was observed on hypotonic stimulation-induced increase in [Ca(2+)]i. These results suggest that TRPV3 channels are not involved in the mechanosensory mechanism during membrane stretch in MCs.
Odontoblasts play an important role in the transduction of the sensory signals underlying dentinal pain. Transmembrane voltage-independent Ca(2+) influx in odontoblasts has been well described. Voltage-dependent Ca(2+) influx has also been reported, but its biophysical properties remain unclear. The aim of the present study was to investigate the desensitizing effect of voltage-dependent Ca(2+) influx in rat odontoblasts by measuring depolarization-induced intracellular free Ca(2+) concentrations ([Ca(2+) ]i ). Odontoblasts on dental pulp slices from newborn rats were acutely isolated and [Ca(2+) ]i measured by using fura-2 fluorescence. Repeated application of extracellular high-K(+) solution (50 mM), which induces membrane depolarization-elicited repeated and transient increases in [Ca(2+) ]i in the presence of extracellular Ca(2+). Increases in depolarization-induced [Ca(2+) ]i showed no significant desensitizing effect (p >0.05; Friedman test). These results suggest that odontoblasts express a voltage-dependent Ca(2+) influx pathway with no desensitizing properties.
The hypothalamic nonapeptide and neurohypophyseal hormone arg-vasopressin (AVP), also known as antidiuretic hormone, is best known for its effects on water reabsorption in kidney. Osteoblasts play a major role in bone formation, employing intracellular Ca(2+) as a second messenger to modulate hormonal responses and as a cofactor for mineralization. Voltage-dependent Ca(2+) channels (VDCCs) mediate the influx of Ca(2+) in response to membrane depolarization. The purpose of this study was to investigate the effects of AVP on VDCC currents in osteoblasts using a patch-clamp recording method. An application of 1渭M AVP facilitated VDCC currents in osteoblasts. To our knowledge, the data presented here demonstrate for the first time that AVP facilitates VDCCs in osteoblasts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright 漏 2024 scite LLC. All rights reserved.
Made with 馃挋 for researchers
Part of the Research Solutions Family.