Hydrogen has recently attracted attention as a possible solution to environmental and energy problems. If hydrogen should be considered an energy storage medium rather than a natural resource. However, free hydrogen does not exist on earth. Many techniques for obtaining hydrogen have been proposed. It can be reformulated from conventional hydrocarbon fuels, or obtained directly from water by electrolysis or high-temperature pyrolysis with a heat source such as a nuclear reactor. However, the efficiencies of these methods are low. The direct heating of water to sufficiently high temperatures for sustaining pyrolysis is very difficult. Pyrolysis occurs when the temperature exceeds 4000 C. Thus plasma electrolysis may be a better alternative, it is not only easier to achieve than direct heating, but also appears to produce more hydrogen than ordinary electrolysis, as predicted by Faraday's laws, which is indirect evidence that it produces very high temperatures. We also observed large amounts of free oxygen generated at the cathode, which is further evidence of direct decomposition, rather than electrolytic decomposition. To achieve the continuous generation of hydrogen with efficiencies exceeding Faraday efficiency, it is necessary to control the surface conditions of the electrode, plasma electrolysis temperature, current density and input voltage. The minimum input voltage required induce the plasma state depends on the density and temperature of the solution, it was estimated as 120 V in this study. The lowest electrolyte temperature at which plasma forms is $75 C. We have observed as much as 80 times more hydrogen generated by plasma electrolysis than by conventional electrolysis at 300 V.
The photolysis of iron carbonyl (Fe(CO)5) adsorbed on titanium dioxide (TiO2, anatase) was studied by FT‐IR spectroscopy. When adsorbed Fe(CO)5 is illuminated by visible and near‐UV light, the IR spectrum of its photolysis products is hardly observed, indicating that most of the Fe(CO)5 is photodecomposed to iron(0) or iron oxides on TiO2. The carbon monoxide (CO) evolution rate upon illumination depends on the wavelength of light; 433 nm light is more effective for CO evolution than 366 nm light. This result implies that the band‐gap excitation of TiO2 has little effect on the photolysis of adsorbed Fe(CO)5, since the absorption edge of TiO2 (anatase) lies at around 400 nm. The effects of substrates on the photolysis of adsorbed Fe(CO)5 are discussed with reference to previous results obtained for aluminium oxide (Al2O3) and silicon dioxide (SiO2), on which the photolysis leads to the formation of Fe2(CO)9 or Fe3(CO)12.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.