In this paper we study variational problems on a bounded domain for a nonlocal elastic energy of peridynamic-type which result in nonlinear systems of nonlocal equations. The well-posedness of variational problems is established via a careful study of the associated energy spaces. In the event of vanishing nonlocality we establish the convergence of the nonlocal energy to a corresponding local energy using the method of Γ-convergence. Building upon existing techniques, we prove an L p -compactness result (on bounded domains) based on near-boundary estimates that is used to study the variational limit of minimization problems subject to various volumetric constraints. For energy functionals in suitable forms, we find the corresponding limiting energy explicitly. As a special case, the classical Navier-Lamé potential energy is realized as a limit of linearized peridynamic energy offering a rigorous connection between the nonlocal peridynamic model to classical mechanics for small uniform strain.
In this paper, the bond-based peridynamic system is analysed as a non-local boundary-value problem with volume constraint. The study extends earlier works in the literature on non-local diffusion and non-local peridynamic models, to include non-positive definite kernels. We prove the well-posedness of both linear and nonlinear variational problems with volume constraints. The analysis is based on some non-local Poincaré-type inequalities and the compactness of the associated non-local operators. It also offers careful characterizations of the associated solution spaces, such as compact embedding, separability and completeness. In the limit of vanishing non-locality, the convergence of the peridynamic system to the classical Navier equations of elasticity with Poisson ratio 1 4 is demonstrated.
Global weighted L p estimates are obtained for the gradient of solutions to nonlinear elliptic Dirichlet boundary value problems over a bounded nonsmooth domain. Morrey and Hölder regularity of solutions are also established, as a consequence. These results generalize various existing estimates for nonlinear equations. The nonlinearities are of at most linear growth and assumed to have a uniform small mean oscillation. The boundary of the domain, on the other hand, may exhibit roughness but assumed to be sufficiently flat in the sense of Reifenberg. Our approach uses maximal function estimates and Vitali covering lemma, and also known regularity results of solutions to nonlinear homogeneous equations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.