As with other retinal cell types, retinal ganglion cells (RGCs) arise from multipotent retinal progenitor cells (RPCs), and their formation is regulated by a hierarchical gene-regulatory network (GRN). Within this GRN, three transcription factors-atonal homolog 7 (Atoh7), POU domain, class 4, transcription factor 2 (Pou4f2), and insulin gene enhancer protein 1 (Isl1)-occupy key node positions at two different stages of RGC development. Atoh7 is upstream and is required for RPCs to gain competence for an RGC fate, whereas Pou4f2 and Isl1 are downstream and regulate RGC differentiation. However, the genetic and molecular basis for the specification of the RGC fate, a key step in RGC development, remains unclear. Here we report that ectopic expression of Pou4f2 and Isl1 in the Atoh7-null retina using a binary knockin-transgenic system is sufficient for the specification of the RGC fate. The RGCs thus formed are largely normal in gene expression, survive to postnatal stages, and are physiologically functional. Our results indicate that Pou4f2 and Isl1 compose a minimally sufficient regulatory core for the RGC fate. We further conclude that during development a core group of limited transcription factors, including Pou4f2 and Isl1, function downstream of Atoh7 to determine the RGC fate and initiate RGC differentiation.retinal development | neural development | transcription factors | cell fate specification | gene regulation A central question in neural development is how the extreme cellular diversity in the central nervous system arises from multipotent neural progenitors. The neural retina is an excellent system to address this question because of its well-defined structure and stereotypical cellular composition. The six neuronal cell types and one glial cell type (Müller glia) form a welllaminated tissue with the various types of cells positioned at distinct layers (1). Many of these cell types are composed of multiple subtypes with distinct functions (2). All cell types in the retina originate from a common pool of retinal progenitor cells (RPCs) following a distinct temporal order (3-5). The ordered births of the retinal cell types are caused by changes of competence in RPCs for the various retinal cell types (6). Both intrinsic and extrinsic mechanisms are involved in regulating the production of the various retinal cell types, but the intrinsic factors, mostly transcription factors, appear to play more deterministic roles in directing progenitor cells toward specific cell fates (5). Many such transcription factors have been identified by loss-and gain-of-function analyses, but these studies often fail to reveal the specific roles these factors play in the development of the cell types with which they are involved (7-9). RPCs are heterogeneous, as has been demonstrated by the nonuniform expression of many RPC genes (10-13). RPCs expressing specific genes, particularly those encoding transcription factors, although still multipotent, tend to be biased for certain retinal cell types. In a few cases, specific fac...
Horizontal cells are interneurons that synapse with photoreceptors in the outer retina. Their genesis during development is subject to regulation by transcription factors in a hierarchical manner. Previously, we showed that Onecut 1 (Oc1), an atypical homeodomain transcription factor, is expressed in developing horizontal cells (HCs) and retinal ganglion cells (RGCs) in the mouse retina. Herein, by knocking out Oc1 specifically in the developing retina, we show that the majority (ϳ80%) of HCs fail to form during early retinal development, implying that Oc1 is essential for HC genesis. However, no other retinal cell types, including RGCs, were affected in the Oc1 knock-out. Analysis of the genetic relationship between Oc1 and other transcription factor genes required for HC development revealed that Oc1 functions downstream of FoxN4, in parallel with Ptf1a, but upstream of Lim1 and Prox1. By in utero electroporation, we found that Oc1 and Ptf1a together are not only essential, but also sufficient for determination of HC fate. In addition, the synaptic connections in the outer plexiform layer are defective in Oc1-null mice, and photoreceptors undergo age-dependent degeneration, indicating that HCs are not only an integral part of the retinal circuitry, but also are essential for the survival of photoreceptors. In sum, these results demonstrate that Oc1 is a critical determinant of HC fate, and reveal that HCs are essential for photoreceptor viability, retinal integrity, and normal visual function.
Formation of new synapses or maintenance of existing synapses requires the delivery of synaptic components from the soma to the nerve termini via axonal transport. One pathway that is important in synapse formation, maintenance and function of the Drosophila neuromuscular junction (NMJ) is the bone morphogenetic protein (BMP)-signaling pathway. Here we show that perturbations in axonal transport directly disrupt BMP signaling, as measured by its downstream signal, phospho Mad (p-Mad). We found that components of the BMP pathway genetically interact with both kinesin-1 and dynein motor proteins. Thick vein (TKV) vesicle motility was also perturbed by reductions in kinesin-1 or dynein motors. Interestingly, dynein mutations severely disrupted p-Mad signaling while kinesin-1 mutants showed a mild reduction in p-Mad signal intensity. Similar to mutants in components of the BMP pathway, both kinesin-1 and dynein motor protein mutants also showed synaptic morphological defects. Strikingly TKV motility and p-Mad signaling were disrupted in larvae expressing two human disease proteins; expansions of glutamine repeats (polyQ77) and human amyloid precursor protein (APP) with a familial Alzheimer's disease (AD) mutation (APPswe). Consistent with axonal transport defects, larvae expressing these disease proteins showed accumulations of synaptic proteins along axons and synaptic abnormalities. Taken together our results suggest that similar to the NGF-TrkA signaling endosome, a BMP signaling endosome that directly interacts with molecular motors likely exist. Thus problems in axonal transport occurs early, perturbs BMP signaling, and likely contributes to the synaptic abnormalities observed in these two diseases.
The Drosophila embryo is an attractive model system for investigating the cellular and molecular basis of neuronal development. Here we describe the procedure for the visualization of Drosophila embryonic nervous system using antibodies to neuronal proteins. Since the entire embryonic peripheral nervous and central nervous systems are well characterized at the level of individual cells (Dambly-Chaudière et al., 1986; Bodmer et al., 1987; Bodmer et al., 1989), any aberrations to these systems can be easily identified using antibodies to different neuronal proteins. The developing embryos are collected at certain times to ensure that the embryos are in the proper developmental stages for visualization. After collection, the outer layers of the embryo, the chorion membrane and the vitelline envelope that surrounds the embryo, are removed before fixation. Embryos are then incubated with neuronal antibodies and visualized using fluorescently labeled secondary antibodies. Embryos at stages 12-17 are visualized to access the embryonic nervous system. At stage 12 the CNS germ band starts shortening and by stage 15 the definitive pattern of the commissure has been achieved. By stage 17 the CNS contracts and the PNS is fully developed (Campos-Ortega et al. 1985). Thus changes in the pattern of the PNS and CNS can be easily observed during these developmental stages.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.