The complex structure of turning aggravates obtaining the desired results in terms of tool wear and surface roughness. The existence of high temperature and pressure make difficult to reach and observe the cutting area. In-direct tool condition, monitoring systems provide tracking the condition of cutting tool via several released or converted energy types, namely, heat, acoustic emission, vibration, cutting forces and motor current. Tool wear inevitably progresses during metal cutting and has a relationship with these energy types. Indirect tool condition monitoring systems use sensors situated around the cutting area to state the wear condition of the cutting tool without intervention to cutting zone. In this study, sensors mostly used in indirect tool condition monitoring systems and their correlations between tool wear are reviewed to summarize the literature survey in this field for the last two decades. The reviews about tool condition monitoring systems in turning are very limited, and relationship between measured variables such as tool wear and vibration require a detailed analysis. In this work, the main aim is to discuss the effect of sensorial data on tool wear by considering previous published papers. As a computer aided electronic and mechanical support system, tool condition monitoring paves the way for machining industry and the future and development of Industry 4.0.
Nowadays, face milling is one of the most widely used machining processes for the generation of flat surfaces. Following international standards, the quality of a machined surface is measured in terms of surface roughness, Ra, a parameter that will decrease with increased tool wear. So, cutting inserts of the milling tool have to be changed before a given surface quality threshold is exceeded. The use of artificial intelligence methods is suggested in this paper for real-time prediction of surface roughness deviations, depending on the main drive power, and taking tool wear, V B into account. This method ensures comprehensive use of the potential of modern CNC machines that are able to monitor the main drive power, N , in real-time. It can likewise estimate the three parameters -maximum tool wear, machining time, and cutting power-that are required to generate a given surface roughness, thereby making the most efficient use of the cutting tool. A series of artificial intelligence methods are tested: random forest (RF), standard Multilayer perceptrons (MLP), Regression Trees, and radial-based functions. Random forest was shown to have the highest model accuracy, followed by regression trees, displaying higher accuracy than the standard MLP and the radial-basis function. Moreover, RF techniques are easily tuned and generate visual information for direct use by the process engineer, such as the linear relationships between process parameters and roughness, and thresholds for avoiding rapid tool wear. All of this information can be directly extracted from the tree structure or by drawing 3D charts plotting two process inputs and the predicted roughness depending on workshop requirements.
Keywords
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.