Spitsbergen has experienced some of the most severe temperature changes in the Arctic during the last three decades. This study relates the recent warming to variations in large‐scale atmospheric circulation (AC), air mass characteristics, and sea ice concentration (SIC), both regionally around Spitsbergen and locally in three fjords. We find substantial warming for all AC patterns for all seasons, with greatest temperature increase in winter. A major part of the warming can be attributed to changes in air mass characteristics associated with situations of both cyclonic and anticyclonic air advection from north and east and situations with a nonadvectional anticyclonic ridge. In total, six specific AC types (out of 21), which occur on average 41% of days in a year, contribute approximately 80% of the recent warming. The relationship between the land‐based surface air temperature (SAT) and local and regional SIC was highly significant, particularly for the most contributing AC types. The high correlation between SAT and SIC for air masses from east and north of Spitsbergen suggests that a major part of the atmospheric warming observed in Spitsbergen is driven by heat exchange from the larger open water area in the Barents Sea and region north of Spitsbergen. Finally, our results show that changes in frequencies of AC play a minor role to the total recent surface warming. Thus, the strong warming in Spitsbergen in the latest decades is not driven by increased frequencies of “warm” AC types but rather from sea ice decline, higher sea surface temperatures, and a general background warming.
Changes in maximum and minimum daily temperatures (TMAX and TMIN, respectively) in nine selected regions of central Europe and in Bulgaria during 1951–1990 are investigated. Average series for central Europe are compiled and analyzed by linear trend analysis and the kernel smoothing. The increase in the annual TMAX in central Europe was, during 1951–1990, slightly lower than that of TMIN (0ċ52°C and 0ċ60°C, respectively). This results in a small decrease in the daily temperature range (DTR) by −0ċ08°C. With the exception of the spring TMIN other linear trends are insignificant. The observed insignificant trends in DTR in the central European region are related to small cloudiness changes. Long‐term fluctuations of annual TMAX, TMIN, and DTR for eight selected series during the twentieth century are also investigated.
The Svalbard Airport composite series spanning the period from 1898 to the present represents one of very few long-term instrumental temperature series from the High Arctic. A homogenized monthly temperature series is available since 2014. Here we increase the resolution from a monthly to daily basis, and further digitization of historical data has reduced the uncertainty of the series. The most pronounced changes in the 120-year record occur during the last three decades. For the 1991–2018 period the number of days warmer than 0 and 5 °C has increased by 25 (21%) and 22 (59%), respectively, per year compared to the 1961–1990 standard normal. Likewise, comparing the same periods, the number of days colder than −10 and −20 °C has decreased by 42 (32%) and 27 (62%), respectively. During the entire time span of the series, the western Spitsbergen climate has gone through stepwise changes, alternating between cold and warm regimes: 1899–1929 was cold, 1930–1961 warm, 1962–1998 cold and 1999–2018 warm. The latest cold regime was 1.0 °C warmer than the first cold one, and the latest warm regime was 1.7 °C warmer than the previous warm one. For the whole series the linear trend for annual means amounts to 0.32°C/decade, which is about 3.5 times the increase of the global mean temperature for the same period. Since 1991, the rate of warming at Svalbard Airport is 1.7 °C/decade, which is more than twice the Arctic average (0.8 °C/decade, north of 66 °N) and about seven times the global average for the same period.
This contribution provides the basics of the climatology of the Polish Tatra Mountains in a nutshell, with particular reference to intense precipitation and its relation to atmospheric circulation. Variability of various precipitation characteristics, including selected indices of intense precipitation in Zakopane and at Kasprowy Wierch, is illustrated in this paper. None of the trends in these characteristics and indices calculated for the entire time interval exhibit a statistical significance, but short-time fluctuations are evident. The occurrence of intense precipitation in the Tatra Mountains is strongly related to three circulation types. These situations (Nc, NEc, Bc) are associated with cyclones following track Vb after van Bebber. In addition to changing frequencies of circulation, this study also reveals an increase in the frequency of the circulation types associated with extreme precipitation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.