Glucose-derived pyruvate is a principal source of acetyl-CoA in all brain cells, through pyruvate dehydogenase complex (PDHC) reaction. Cholinergic neurons like neurons of other transmitter systems and glial cells, utilize acetyl-CoA for energy production in mitochondria and diverse synthetic pathways in their extramitochondrial compartments. However, cholinergic neurons require additional amounts of acetyl-CoA for acetylcholine synthesis in their cytoplasmic compartment to maintain their transmitter functions. Characteristic feature of several neurodegenerating diseases including Alzheimer’s disease and thiamine diphosphate deficiency encephalopathy is the decrease of PDHC activity correlating with cholinergic deficits and losses of cognitive functions. Such conditions generate acetyl-CoA deficits that are deeper in cholinergic neurons than in noncholinergic neuronal and glial cells, due to its additional consumption in the transmitter synthesis. Therefore, any neuropathologic conditions are likely to be more harmful for the cholinergic neurons than for noncholinergic ones. For this reason attempts preserving proper supply of acetyl-CoA in the diseased brain, should attenuate high susceptibility of cholinergic neurons to diverse neurodegenerative conditions. This review describes how common neurodegenerative signals could induce deficts in cholinergic neurotransmission through suppression of acetyl-CoA metabolism in the cholinergic neurons.
Classical protein kinase C (PKC) family members are activated by the binding of various ligands to one of several cysteine-rich domains of the enzyme. The natural agonist, diacylglycerol (DAG), and the natural product superagonist, phorbol dibutyrate (PDB), activate the enzyme to produce wide-ranging physiological effects. The second cysteine-rich (Cys2) domain of rat brain PKC-gamma was expressed and labeled with 15N and 13C, and the solution structure was determined to high resolution using multidimensional heteronuclear NMR methods. The phorbol binding site was identified by titrating this domain with phorbol-12,13-dibutyrate (PDB) in the presence of organic cosolvents. Titrations of this domain with lipid micelles, in the absence and presence of phorbols, indicate selective broadening of some resonances. The observed behavior indicates conformational exchange between bound and free states upon protein-micelle interaction. The data also suggest that half of the domain, including the phorbol site and one of the zinc sites, is capable of inserting into membranes.
A preferential loss of brain cholinergic neurons in the course of Alzheimer's disease and other encephalopathies is accompanied by a proportional impairment of acetyl-CoA synthesizing capacity in affected brains. Particular susceptibility of cholinergic neurons to neurodegeneration might results from insufficient supply of acetyl-CoA for energy production and acetylcholine synthesis in these conditions. Exposure of SN56 cholinergic neuroblastoma cells to dibutyryl cAMP and retinoic acid for 3 days caused their morphologic differentiation along with the increase in choline acetyltransferase activity, acetylcholine content and release, calcium content, and the expression of p75 neurotrophin receptors. Acetyl-CoA content correlated inversely with choline acetyltransferase activity in different lines of SN56 cells. In differentiated cells, aluminum (1 mM), amyloid beta(25-35) (0.001 mM), and sodium nitroprusside (1 mM), caused much greater decrease of pyruvate dehydrogenase and choline acetyltransferase activities and cell viability than in nondifferentiated ones. Aluminum (1 mM) aggravated suppressory effects of amyloid beta on choline acetyltransferase and pyruvate dehydrogenase activities and viability of differentiated cells. Similar additive inhibitory effects were observed upon combined exposure of differentiated cells to sodium nitroprusside and amyloid beta(25-35). None or much smaller suppressory effects of these neurotoxins were observed in nondifferentiated cells. Increase in the fraction of nonviable differentiated cells positively correlated with losses of choline acetyltransferase, pyruvate dehydrogenase activities, and cytoplasmic cytochrome c content in different neurotoxic conditions. These data indicate that highly differentiated cholinergic neurons may be more susceptible to aluminum and other neurotoxins than the nondifferentiated ones due to relative shortage of acetyl-CoA, increased content of Ca(2+), and expression of p75 receptors, yielding increase in cytoplasmic cytochrome c and subsequently grater rate of death of the former ones.
Pathological alterations of renal function in insulindependent diabetes have been attributed to numerous factors, including adenosine. This study examined the expression levels of adenosine receptors (ARs) in the kidney of the streptozotocin-induced diabetic rat. In the diabetic kidney A1-AR mRNA levels increased 1.7-and 2.8-fold in cortex and medulla, respectively. This was accompanied by increased A1-AR protein levels in membranes of kidney cortex (1.5-fold) and medulla (threefold). A1-AR immunoreactivity increased strongly along medullar tubules especially in the collecting duct. The levels of A2a-AR mRNA increased twofold in diabetic kidney cortex but remained unchanged in medulla; however, A2a-AR protein levels increased more than threefold in cortex. Immunohistochemistry showed increased A2a-AR immunoreactivity in luminal membranes of cortical collecting ducts and in epithelial cells of preglomerular vessels. There were no significant changes in A2b-AR expression in diabetic kidney except in medullar membranes, where the receptor protein content decreased by 60%. A3-AR mRNA levels in diabetic kidney remained unchanged, but membrane-associated A3-AR protein levels increased by 70% in diabetic kidney cortex and decreased by 80% in medulla. These changes in ARs genes expression, receptor protein content, and cellular and tissue distribution, correspond to abnormalities characteristic of the diabetic kidney, suggesting involvement in pathogenesis of diabetic nephropathy. Kidney disease is one of the leading hallmarks of human diabetes. It is characterized by persistent proteinuria, hypertension, and progressive loss of renal function. 1These changes are preceded by glomerular hyperfiltration, which is an early symptom in the development of diabetic nephropathy.2,3 Pathological changes of renal function in insulin-dependent diabetes have been attributed to numerous factors, including impaired action of angiotensin II, NO, prostaglandins, and adenosine. 4 -7 Adenosine in the kidney plays a broad regulatory role including modulation of renal blood flow, glomerular filtration rate, hormone and neurotransmitter release, transport function, and urine flow.8 Therefore, any changes in its action may significantly affect function of this organ.Adenosine is formed both in the extra-and intracellular space and exerts its physiological effect by coupling to cell-surface receptors, namely A1, A2a, A2b, and A3. The affinity for adenosine varies between receptors; thus its activation depends on adenosine concentration. The level of adenosine depends on its metabolism and transport across plasma membranes. Our previous studies showed that, except for ENT2, the expression level of nucleoside transporters in kidney of diabetic rats was not altered. 10 Moreover, the expression level of adenosine kinase in the diabetic kidney was greatly reduced, suggesting that the turnover of the adenosine-AMP metabolic cycle might be impaired under diabetic conditions. 11
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.