This paper considers the potential of using a Tuned Liquid Column Damper (TLCD) to reduce structural vibrations of a wind turbine tower. The effect of TLCD on wind turbine towers, including the soil-structure interactions for a monopile foundation was modelled theoretically and scaled laboratory experiments were carried out to validate these results. The tower of the turbine is represented as an Euler beam with a set of springs at the boundary to simulate the soilstructure interaction. TLCD design was carried out using such a model and the reduction in tower vibrations due to the deployment of TLCD was then examined for various loading conditions in the frequency and the time domain. The efficiency of TLCDs for reducing structural vibrations was investigated for tuned and detuned conditions. The response of a smallscale model was simulated along with that of a full-scale turbine and parametric studies around the variations of inputs related to uncertainties were performed. Experiments were carried out on a scaled model turbine to examine the effectiveness of the TLCD. The practicalities of installing a TLCD in a full-scale turbine were examined.
Effective Structural Health Monitoring (SHM) often requires continuous monitoring to capture changes of features of interest in structures, which are often located far from power sources. A key challenge lies in continuous low-power data transmission from sensors. Despite significant developments in long-range, low-power telecommunication (e.g., LoRa NB-IoT), there are inadequate demonstrative benchmarks for low-power SHM. Damage detection is often based on monitoring features computed from acceleration signals where data are extensive due to the frequency of sampling (~100–500 Hz). Low-power, long-range telecommunications are restricted in both the size and frequency of data packets. However, microcontrollers are becoming more efficient, enabling local computing of damage-sensitive features. This paper demonstrates the implementation of an Edge-SHM framework through low-power, long-range, wireless, low-cost and off-the-shelf components. A bespoke setup is developed with a low-power MEM accelerometer and a microcontroller where frequency and time domain features are computed over set time intervals before sending them to a cloud platform. A cantilever beam excited by an electrodynamic shaker is monitored, where damage is introduced through the controlled loosening of bolts at the fixed boundary, thereby introducing rotation at its fixed end. The results demonstrate how an IoT-driven edge platform can benefit continuous monitoring.
There are a large number of time domain, frequency domain and time-frequency signal processing methods available for univariate feature extraction. However, there is no consensus in SHM on which feature, or feature sets, are best suited for the identification, localisation and prognosis of damage. This paper attempts to address this problem by providing a comprehensive benchmark of feature selection & reduction methods applied to an extensive set of univariate features. These univariate features are extracted using multiple statistical, temporal and spectral methods from the benchmark S101 and Z24 bridge datasets. These datasets contain labelled accelerometer recordings from full scale bridges as they are progressively subjected to multiple damage scenarios. To identify the minimal set of features that best distinguishes between the multiple damage states, a supervised machine learning approach is used in combination with multiple feature selection methods. The ability of these reduced feature sets to distinguish between damage states is benchmarked using the prediction performance of the classification models, with the training and test sets obtained through stratified k-fold cross validation. The results obtained show that reduced sets of univariate features, extracted from a single accelerometer sensor, are capable of accurately distinguishing between multiple classes of healthy and damaged states. This work provides a benchmark for SHM practitioners and researchers alike for the choice, comparison and validation of feature extraction and feature selection methods across a wide range of systems.
Structural damage in a bridge is defined as a significant deviation in the structural response from its standard operating conditions, not explainable by variations in external environmental and operational effects. However, environmental effects such as temperature fluctuations can cause significant seasonal variations in the structural response of a bridge and can mask its changes due to structural damage. This poses a challenge for structural health monitoring of bridges where reliable diagnosis of damage or deterioration is often related to isolation of the responses. To address it, a statistical damage-detection methodology is introduced where strain data are modelled using a dynamic harmonic regression time-series model. Prediction intervals of multi-step ahead forecasts from the dynamic harmonic regression model are then used as statistical control limits within which the observed phenomenon should fall under standard operating conditions. This single recursive structural health monitoring framework for automatic fitting and multi-step ahead forecasting of 1-min interval time-series strain data includes recorded temperature values and diurnal trends as regressors in the model to account for environmental variations. The potential of this method as a robust automatic structural health monitoring strategy is demonstrated on strain data sampled at 1-min interval from a full-scale damaged pre-stressed concrete bridge – before, during and after repair. The proposed method can capture both sudden and daily changes in structural response due to temperature effects, and a rolling multi-step ahead interval forecast was able to identify damage on back-cast data transitioning from a healthy state to a damaged state.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.