Naturally occurring compounds are considered as attractive candidates for cancer treatment and prevention. Quercetin and ellagic acid are naturally occurring flavonoids abundantly seen in several fruits and vegetables. In the present study, we evaluate and compare antitumor efficacies of quercetin and ellagic acid in animal models and cancer cell lines in a comprehensive manner. We found that quercetin induced cytotoxicity in leukemic cells in a dose-dependent manner, while ellagic acid showed only limited toxicity. Besides leukemic cells, quercetin also induced cytotoxicity in breast cancer cells, however, its effect on normal cells was limited or none. Further, quercetin caused S phase arrest during cell cycle progression in tested cancer cells. Quercetin induced tumor regression in mice at a concentration 3-fold lower than ellagic acid. Importantly, administration of quercetin lead to ~5 fold increase in the life span in tumor bearing mice compared to that of untreated controls. Further, we found that quercetin interacts with DNA directly, and could be one of the mechanisms for inducing apoptosis in both, cancer cell lines and tumor tissues by activating the intrinsic pathway. Thus, our data suggests that quercetin can be further explored for its potential to be used in cancer therapeutics and combination therapy.
Repair of double-strand breaks in mammalian mitochondria depends on microhomology-mediated end joining (MMEJ). Classical NHEJ is not detectable in mitochondria. DNA ligase III, but not ligase IV or ligase I, is involved in mitochondrial MMEJ. The protein machinery involved in miitochondrial MMEJ includes CtIP, FEN1, ligase III, MRE11, and PARP1.
The Ku70-Ku80 (Ku) heterodimer binds rapidly and tightly to ends of DNA double-strand breaks and recruits several factors of the Non-Homologous End Joining (NHEJ) pathway through molecular mechanisms that remain unclear. Here, we describe the crystal structures of the Ku-binding motifs (KBM) of the NHEJ proteins APLF (A-KBM) and XLF (X-KBM) bound to a Ku-DNA complex. The two KBMs motifs bind on remote sites of Ku80 α/β domain. The X-KBM occupies an internal pocket formed after an unprecedented large outward rotation of the Ku80 α/β domain. We reveal independent recruitment at laser-irradiated sites of the APLF-interacting protein XRCC4 and of XLF through the respective binding of A- and X-KBMs to Ku80. Finally, we show that mutations on the X-KBM and A KBM binding sites in Ku80 compromises efficiency and accuracy of end-joining and cellular radiosensitivity. A- and X-KBMs may represent two initial anchorage points necessary to build the NHEJ intricate interactions network.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.