The RAR-related orphan receptor gamma t (RORγt) is a nuclear receptor required for generating IL-17-producing CD4 + Th17 T cells, which are essential in host defense and may play key pathogenic roles in autoimmune diseases. Oxysterols elicit profound effects on immune and inflammatory responses as well as on cholesterol and lipid metabolism. Here, we describe the identification of several naturally occurring oxysterols as RORγt agonists. The most potent and selective activator for RORγt is 7β, 27-dihydroxycholesterol (7β, 27-OHC). We show that these oxysterols reverse the inhibitory effect of an RORγt antagonist, ursolic acid, in RORγ-or RORγt-dependent cell-based reporter assays. These ligands bind directly to recombinant RORγ ligand binding domain (LBD), promote recruitment of a coactivator peptide, and reduce binding of a corepressor peptide to RORγ LBD. In primary cells, 7β, 27-OHC and 7α, 27-OHC enhance the differentiation of murine and human IL-17-producing Th17 cells in an RORγt-dependent manner. Importantly, we showed that Th17, but not Th1 cells, preferentially produce these two oxysterols. In vivo, administration of 7β, 27-OHC in mice enhanced IL-17 production. Mice deficient in CYP27A1, a key enzyme in generating these oxysterols, showed significant reduction of IL-17-producing cells, including CD4+ and γδ + T cells, similar to the deficiency observed in RORγt knockout mice. Our results reveal a previously unknown mechanism for selected oxysterols as immune modulators and a direct role for CYP27A1 in generating these RORγt agonist ligands, which we propose as RORγt endogenous ligands, driving both innate and adaptive IL-17-dependent immune responses.
The effects of topical application of arachidonic acid (AA) or phorbol ester, tetradecanoylphorbol 13-acetate (TPA), on edema response, vascular permeability, MPO, NAG, and generation of eicosanoids were studied in two murine models of cutaneous inflammation. AA produced a short-lived edema response with a rapid onset that was associated with marked increases in levels of prostaglandins (PGE2, 6-keto-PGF1 alpha, PGF2 alpha), thromboxane B2 (TxB2) and leukotriene B4 (LTB4), with smaller increases in levels of LTC4. TPA produced a longer-lasting edema that was associated with marked influx of neutrophils and predominant formation of LTB4 along with significant changes in levels of TxB2. Circulating T lymphocytes have no apparent role in the acute inflammatory responses induced by either agent. Arachidonic acid-induced vascular permeability preceded the edema response and neutrophil influx, whereas TPA-induced vascular permeability paralleled the edema response and influx of neutrophils. Mast cells appear to be important in the complete expression of inflammatory response, i.e., edema, cellular influx, and vascular permeability induced by either AA or TPA, as these responses were blunted in mast cell-deficient mice. Inhibitors of CO or 5-LO attenuated inflammatory responses in both models. The LTB4 receptor antagonist, SC-41930, inhibited the inflammatory response to TPA but had little effect on that initiated by AA. This suggests that LTB4 is an important mediator in the phorbol ester-induced inflammatory response, whereas peptidoleukotrienes and prostaglandins regulate vascular permeability responses in the arachidonate model.
Demyelination is a hallmark of several human diseases, including multiple sclerosis. To understand better the process of demyelination and remyelination, we explored the use of an in vitro organotypic cerebellar slice culture system. Parasagittal slices of postnatal Day 10 (P10) rat cerebella cultured in vitro demonstrated significant myelination after 1 week in culture. Treatment of the cultures at 7 days in vitro (DIV) with the bioactive lipid lysolecithin (lysophosphatidylcholine) for 15-17 hr in vitro produced marked demyelination. This demyelination was observed by immunostaining for the myelin components myelin basic protein (MBP), myelin oligodendrocyte glycoprotein (MOG), and 2', 3'-cyclic nucleotide 3'-phosphodiesterase (CNPase). After a transient demyelinating insult with lysolecithin in vitro, the cultures recovered with oligodendrocyte differentiation recapitulating a normal time course; there was initially re-expression of CNPase and MBP during this recovery, and this was followed by MOG. In addition, there seemed to be some limited remyelination during the recovery phase. Lysolecithin thus induces demyelination in an in vitro organotypic cerebellar slice culture system, providing a model system for studying myelination, demyelination, and remyelination in vitro.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.