Recently, the establishment of technical standards for grid connection has gained interest in academia and industry. These standards have focused on the reactive power control function of the grid-connected inverter and maintenance of grid operation, and include detailed information about the grid support function. However, remote control communication and control devices for grid support functions, and other distributed sources, such as wind power and energy storage systems, other than inverters have not been addressed. In this paper, the control of the interlinking converter (ILC) in a hybrid microgrid considering low voltage ride-through (LVRT) among grid support functions is investigated. The proposed method consists of an energy management system considering LVRT and a cooperative control scheme. In the energy management system, an algorithm capable of mode selection was constructed by applying the LVRT curve. Then, considering the LVRT situation, the allowable reactive power range of the ILC was mathematically analyzed through the cooperative control of the energy storage device and the ILC. The proposed method enables us to perform active and reactive power control of the ILC in a hybrid distribution network, considering the power factor under various conditions. This functionality, such as supplying reactive power, significantly contributes to the enhanced grid resilience with distributed power sources, including renewable energy. The proposed strategies were verified through experiments after configuring an experimental set of distributed power sources.
In grid-connected operations, a microgrid can solve the problem of surplus power through regeneration; however, in the case of standalone operations, the only method to solve the surplus power problem is charging the energy storage system (ESS). However, because there is a limit to the capacity that can be charged in an ESS, a separate energy management strategy (EMS) is required for stable microgrid operation. This paper proposes an EMS for a hybrid AC/DC microgrid based on an artificial neural network (ANN). The ANN is composed of a two-step process that operates the microgrid by outputting the operation mode and charging and discharging the ESS. The microgrid consists of an interlinking converter to link with the AC distributed system, a photovoltaic converter, a wind turbine converter, and an ESS. The control method of each converter was determined according to the mode selection of the ANN. The proposed ANN-based EMS was verified using a laboratory-scale hybrid AC/DC microgrid. The experimental results reveal that the microgrid operation performed stably through control of individual converters via mode selection and reference to ESS power, which is the result of ANN integration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.