Statistical model selection and evaluation methods like Akaike information criteria (AIC) and Monte Carlo simulation (MCS) have often established efficient output for reliability analysis with large sample size. Information criterion can provide better model selection and evaluation in small sample sizes setup by considering the well-known measure of bootstrap resampling. Our purpose is to utilize the capabilities of bootstrap resampling in information criterion to check for uncertainty arising from model selection as well as statistics of interest for small sample size using reliability analysis. In this study, therefore, a unique and efficient simulation scheme is proposed which contemplates the best model selection devised from efficient bootstrap simulation or variance reduced bootstrap information criterion to be combined with reliability analysis. It is beneficial to compute the spread of reliability values as against solitary fixed values with desirable statistics of interest for uncertainty analysis. The proposed simulation scheme is verified using a number of sample size focused response functions under repetitions-centred approach with AIC-based reliability analysis for comparison and MCS for accuracy. The results show that the proposed simulation scheme aids the statistics of interest by reducing the spread and hence the uncertainty in sample size-based reliability analysis when compared with conventional methods.Keywords Efficient bootstrap simulation . Reliability analysis . Small sample size . Uncertainty analysis . Akaike information criteria Highlights • Simulation scheme proposed for using ordinary bootstrap resampling in variance reduced bootstrap information criterion (EIC) for reliability analysis.• Simulation scheme compared with Akaike information criteria and Monte Carlo simulation-based reliability analysis for various response functions.• Small sample-based analysis with repetitions to show the robustness of method.• Uncertainty reduction by considering spread of reliability values and not a single fixed value.• Using model occurrence number, mean, absolute percent error and standard deviation as statistics of interest for comparisons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.