Real-time monitoring of water quality for sewer system is required for efficient sewer network design because it provides information on the precise loading of pollutant to wastewater treatment facilities and the impact of loading on receiving water. In this study, synchronous fluorescence spectra and its first derivatives were investigated using a number of wastewater samples collected in sewer systems in urban and non-urban areas, and the optimum fluorescence feature was explored for the estimation of biochemical oxygen demand (BOD) and chemical oxygen demand (COD) concentrations of sewer samples. The temporal variations in BOD and COD showed a regular pattern for urban areas whereas they were relatively irregular for non-urban areas. Irrespective of the sewer pipes and the types of the areas, two distinct peaks were identified from the synchronous fluorescence spectra, which correspond to protein-like fluorescence (PLF) and humic-like fluorescence (HLF), respectively. HLF in sewer samples appears to be associated with fluorescent whitening agents. Five fluorescence characteristics were selected from the synchronous spectra and the first-derivatives. Among the selected fluorescence indices, a peak in the PLF region (i.e., Index I) showed the highest correlation coefficient with both BOD and COD. A multiple regression approach based on suspended solid (SS) and Index I used to compensate for the contribution of SS to BOD and COD revealed an improvement in the estimation capability, showing good correlation coefficients of 0.92 and 0.94 for BOD and COD, respectively.
Objectives Vision Pro (West Medica, Perchtoldsdorf, Austria) is a recently developed digital morphology analyzer. We evaluated the performance of Vision Pro on white blood cell (WBC) differentials. Methods In a total of 200 peripheral blood smear samples (100 normal and 100 abnormal samples), WBC preclassification and reclassification by Vision Pro were evaluated and compared with manual WBC count, according to the Clinical and Laboratory Standards Institute guidelines (H20-A2). Results The overall sensitivity was high for normal WBCs and nRBCs (80.1–98.0%). The overall specificity and overall efficiency were high for all cell classes (98.1–100.0% and 97.7–99.9%, respectively). The absolute values of mean differences between Vision Pro and manual count ranged from 0.01 to 1.31. In leukopenic samples, those values ranged from 0.09 to 2.01. For normal WBCs, Vision Pro preclassification and manual count showed moderate or high correlations (r=0.52–0.88) except for basophils (r=0.34); after reclassification, the correlation between Vision Pro and manual count was improved (r=0.36–0.90). Conclusions This is the first study that evaluated the performance of Vision Pro on WBC differentials. Vision Pro showed reliable analytical performance on WBC differentials with improvement after reclassification. Vision Pro could help improve laboratory workflow.
Spectroscopic and chromatographic changes in dissolved organic matter (DOM) characteristics of influent and treated sewage were investigated for a wastewater treatment plant (WWTP) with a biological advanced process. Refractory DOM (R-DOM) was defined as the dissolved organic carbon concentrations of the samples after 28-day incubation for this study. Specific UV absorbance (SUVA), hydrophobicity, synchronous fluorescence spectra and molecular weight (MW) distributions were selected as DOM characteristics. The percent distribution of R-DOM for the effluent was much higher than that of the influent, indicating that biodegradable DOM was selectively removed during the process. Comparison of the influent versus the effluent sewage revealed that SUVA, fulvic-like fluorescence (FLF), humic-like fluorescence (HLF), the apparent MW values were enhanced during the treatment. This suggests that more aromatic and humic-like compounds were enriched during the biological process. No significant difference in the DOM characteristics was observed between the original effluent (i.e., prior to the incubation) and the influent sewage after the incubation. This result suggests that the major changes in wastewater DOM characteristics occurring during the biological advanced process were similar to those for simple microbial incubation.
ABO incompatibility is not considered a contraindication for hematopoietic stem cell transplantation (HSCT). We hypothesized that recipient-derived isoagglutinin (RDI) levels could play a critical role in clinical outcomes. In this study, we compared clinical outcomes such as survival, GVHD, infection, relapse, transfusion, and engraftment, among ABO-compatible patients (ABOc), ABO-incompatible patients (ABOi) with low RDI, and ABOi patients with high RDI. The ABOi with high RDI group was defined as recipients with more than 1:16 RDI levels. We analyzed 103 recipients (ABOc, 53; ABOi with low RDI, 36; ABOi with high RDI, 14). The ABOi with high RDI group showed a decreased 1-year survival and increased acute GVHD grade IV and RBC transfusion (p = 0.017, 0.027, and 0.032, respectively). The ABOi with high RDI group was an independent risk factor for increased death, RBC transfusion, and poor platelet (PLT) engraftment (odds ratio (OR) = 3.20, p = 0.01; OR = 8.28, p = 0.02; OR = 0.18, p = 0.03, respectively). The ABOi with high RDI group showed significantly delayed PLT engraftment. In conclusion, this is the first study underscoring high RDI levels as a marker predicting unfavorable outcomes in ABOi HSCT.
The spectroscopic characteristics and relative distribution of refractory dissolved organic matter (R-DOM) in sewage have been investigated using the influent and the effluent samples collected from 15 large-scale biological wastewater treatment plants (WWTPs). Correlation between the characteristics of the influent and the final removal efficiency was also examined. Enhancement of specific ultraviolet absorbance (SUVA) and a higher R-DOM distribution ratio were observed for the effluent DOM compared with the influent DOM. However, the use of conventional rather than advanced biological treatments did not appear to affect either the effluent DOM or the removal efficiency, and there was no statistical significant difference between the two. No consistent trend was observed in the changes in the synchronous fluorescence spectra of the DOM after biological treatment. Irrespective of the treatment option, the removal efficiency of DOM was greater when the influent DOM had a lower SUVA, reduced DOC-normalized humic substance-like fluorescence, and a lower R-DOM distribution. These results suggest that selected characteristics of the influent may provide an indication of DOM removal efficiency in WWTPs. For R-DOM removal efficiency, however, similar characteristics of the influent did not show a negative relationship, and even exhibited a slight positive correlation, suggesting that the presence of refractory organic carbon structures in the influent sewage may stimulate microbial activity and inhibit the production of R-DOM during biological treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.